References
-
Rosenkranz, A. et al. Correlating wine astringency with physical measures – Current knowledge and future directions. Adv. Colloid Interface Sci. 296, 102520 (2021).
-
Laguna, L. & Sarkar, A. Oral tribology: update on the relevance to study astringency in wines. Tribology – Mater. Surf. Interfaces. 11, 116–123 (2017).
-
Ma, S., Lee, H., Liang, Y. & Zhou, F. Astringent mouthfeel as a consequence of lubrication failure. Angew Chem. Int. Ed. 55, 5793–5797 (2016).
-
Rossetti, D., Yakubov, G. E., Stokes, J. R., Williamson, A. M. & Fuller, G. G. Interaction of human whole saliva and astringent dietary compounds investigated by interfacial shear rheology. Food Hydrocoll. 22, 1068–1078 (2008).
-
Rudge, R. E. D. et al. A tribological approach to astringency perception and astringency prevention. Food Hydrocoll. 121, 106951 (2021).
-
Kew, B. et al. Transforming sustainable plant proteins into high performance lubricating microgels. Nat. Commun. 14, 4743 (2023).
-
Agorastos, G. et al. Lubrication behavior of ex-vivo salivary pellicle influenced by tannins, Gallic acid and mannoproteins. Heliyon 8, e12347 (2022).
-
Bajec, M. R. & Pickering, G. J. Astringency: mechanisms and perception. Crit. Rev. Food Sci. Nutr. 48, 858–875 (2008).
-
Schobel, N. et al. Astringency is a trigeminal sensation that involves the activation of g protein-coupled signaling by phenolic compounds. Chem. Senses. 39, 471–487 (2014).
-
Simon, S. A., Hall, W. L. & Schiffman, S. S. Astringent-tasting compounds alter ion transport across isolated canine lingual epithelia. Pharmacol. Biochem. Behav. 43, 271–283 (1992).
-
Green, B. G. Oral astringency: A tactile component of flavor. Acta. Psychol. 84, 119–125 (1993).
-
Canon, F. et al. Aggregation of the salivary proline-rich protein IB5 in the presence of the tannin EgCG. Langmuir 29, 1926–1937 (2013).
-
Soares, S. et al. Reactivity of human salivary proteins families toward food polyphenols. J. Agric. Food Chem. 59, 5535–5547 (2011).
-
De Wijk, R. A. & Prinz, J. F. Mechanisms underlying the role of friction in oral texture. J. Texture Stud. 37, 413–427 (2006).
-
Upadhyay, R., Brossard, N. & Chen, J. Mechanisms underlying astringency: introduction to an oral tribology approach. J. Phys. D: Appl. Phys. 49, 104003 (2016).
-
Wang, S., Olarte Mantilla, S. M., Smith, P. A., Stokes, J. R. & Smyth, H. E. Astringency sub-qualities drying and pucker are driven by tannin and pH – Insights from sensory and tribology of a model wine system. Food Hydrocoll. 109, 106109 (2020).
-
Morzel, M., Siying, T., Brignot, H. & Lherminier, J. Immunocytological detection of salivary mucins (MUC5B) on the mucosal pellicle lining human epithelial buccal cells. Microsc. Res. Tech. 77, 453–457 (2014).
-
Bradway, S. D. et al. Formation of salivary-mucosal pellicle: the role of transglutaminase. Biochem. J. 284, 557–564 (1992).
-
Gibbins, H., Proctor, G., Yakubov, G., Wilson, S. & Carpenter, G. Concentration of salivary protective proteins within the bound oral mucosal pellicle. Oral Dis. 20, 707–713 (2014).
-
Canon, F. et al. Perspectives on astringency sensation: an alternative hypothesis on the molecular origin of astringency. J. Agric. Food Chem. 69, 3822–3826 (2021).
-
Ployon, S. et al. The membrane-associated MUC1 improves adhesion of salivary MUC5B on buccal cells. Application to development of an in vitro cellular model of oral epithelium. Arch. Oral Biol. 61, 149–155 (2016).
-
Nayak, A. & Carpenter, G. H. A physiological model of tea-induced astringency. Physiol. Behav. 95, 290–294 (2008).
-
Lei, L., Tang, Y., Zheng, J., Ma, G. & Zhou, Z. Influence of two polyphenols on the structure and lubrication of salivary pellicle: an in vitro study on astringency mechanism. Friction 10, 167–178 (2022).
-
Brossard, N., Cai, H., Osorio, F., Bordeu, E. & Chen, J. Oral tribological study on the astringency sensation of red wines. J. Texture Stud. 47, 392–402 (2016).
-
Edmonds, R. S., Finney, T. J., Bull, M. R., Watrelot, A. A. & Kuhl, T. L. Friction measurements of model saliva-wine solutions between polydimethylsiloxane surfaces. Food Hydrocoll. 113, 106522 (2021).
-
Rossetti, D., Bongaerts, J. H. H., Wantling, E., Stokes, J. R. & Williamson, A. M. Astringency of tea catechins: more than an oral lubrication tactile percept. Food Hydrocoll. 23, 1984–1992 (2009).
-
Laguna, L. et al. Exploring mouthfeel in model wines: Sensory-to-instrumental approaches. Food Res. Int. 102, 478–486 (2017).
-
Shimada, T. Salivary proteins as a defense against dietary tannins. J. Chem. Ecol. 32, 1149–1163 (2006).
-
Bennick, A. Interaction of plant polyphenols with salivary proteins. Crit. Rev. Oral Biol. Med. 13, 184–196 (2002).
-
Lu, Y. & Bennick, A. Interaction of tannin with human salivary proline-rich proteins. Arch. Oral Biol. 43, 717–728 (1998).
-
Ammam, I. et al. Exploring the role of the MUC1 mucin in human oral lubrication by tribological in vitro studies. Preprint at. https://doi.org/10.21203/rs.3.rs-4455367/v1 (2024).
-
Nivet, C. et al. Development of new models of oral mucosa to investigate the impact of the structure of transmembrane mucin-1 on the mucosal pellicle formation and its physicochemical properties. Biomedicines 12, 139 (2024).
-
Kullaa, A. M., Asikainen, P., Herrala, M., Ukkonen, H. & Mikkonen, J. J. W. Microstructure of oral epithelial cells as an underlying basis for salivary mucosal pellicle. Ultrastruct Pathol. 38, 382–386 (2014).
-
Macao, B., Johansson, D. G. A., Hansson, G. C. & Härd, T. Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nat. Struct. Mol. Biol. 13, 71–76 (2006).
-
Levitin, F. et al. The MUC1 SEA module is a Self-cleaving domain. J. Biol. Chem. 280, 33374–33386 (2005).
-
Lindén, S. K. et al. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog. 5, e1000617 (2009).
-
Cabiddu, G. et al. Proteomic characterization of the mucosal pellicle formed in vitro on a cellular model of oral epithelium. Journal Proteomics. 222, 103797. ISSN 1874-3919 (2020).
-
Scharbert, S., Holzmann, N. & Hofmann, T. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J. Agric. Food Chem. 52, 3498–3508 (2004).
-
Boze, H. et al. Proline-rich salivary proteins have extended conformations. Biophys. J. 99, 656–665 (2010).
-
Ployon, S. et al. Mechanisms of astringency: structural alteration of the oral mucosal pellicle by dietary tannins and protective effect of bPRPs. Food Chem. 253, 79–87 (2018).
-
Linden, S. K., Sutton, P., Karlsson, N. G., Korolik, V. & McGuckin, M. A. Mucins in the mucosal barrier to infection. Mucosal Immunol. 1, 183–197 (2008).
