Investigating the influence of astringent compounds on oral lubrication and the protective role of proline-rich proteins

investigating-the-influence-of-astringent-compounds-on-oral-lubrication-and-the-protective-role-of-proline-rich-proteins
Investigating the influence of astringent compounds on oral lubrication and the protective role of proline-rich proteins

References

  1. Rosenkranz, A. et al. Correlating wine astringency with physical measures – Current knowledge and future directions. Adv. Colloid Interface Sci. 296, 102520 (2021).

    Google Scholar 

  2. Laguna, L. & Sarkar, A. Oral tribology: update on the relevance to study astringency in wines. Tribology – Mater. Surf. Interfaces. 11, 116–123 (2017).

    Google Scholar 

  3. Ma, S., Lee, H., Liang, Y. & Zhou, F. Astringent mouthfeel as a consequence of lubrication failure. Angew Chem. Int. Ed. 55, 5793–5797 (2016).

    Google Scholar 

  4. Rossetti, D., Yakubov, G. E., Stokes, J. R., Williamson, A. M. & Fuller, G. G. Interaction of human whole saliva and astringent dietary compounds investigated by interfacial shear rheology. Food Hydrocoll. 22, 1068–1078 (2008).

    Google Scholar 

  5. Rudge, R. E. D. et al. A tribological approach to astringency perception and astringency prevention. Food Hydrocoll. 121, 106951 (2021).

    Google Scholar 

  6. Kew, B. et al. Transforming sustainable plant proteins into high performance lubricating microgels. Nat. Commun. 14, 4743 (2023).

    Google Scholar 

  7. Agorastos, G. et al. Lubrication behavior of ex-vivo salivary pellicle influenced by tannins, Gallic acid and mannoproteins. Heliyon 8, e12347 (2022).

    Google Scholar 

  8. Bajec, M. R. & Pickering, G. J. Astringency: mechanisms and perception. Crit. Rev. Food Sci. Nutr. 48, 858–875 (2008).

    Google Scholar 

  9. Schobel, N. et al. Astringency is a trigeminal sensation that involves the activation of g protein-coupled signaling by phenolic compounds. Chem. Senses. 39, 471–487 (2014).

    Google Scholar 

  10. Simon, S. A., Hall, W. L. & Schiffman, S. S. Astringent-tasting compounds alter ion transport across isolated canine lingual epithelia. Pharmacol. Biochem. Behav. 43, 271–283 (1992).

    Google Scholar 

  11. Green, B. G. Oral astringency: A tactile component of flavor. Acta. Psychol. 84, 119–125 (1993).

    Google Scholar 

  12. Canon, F. et al. Aggregation of the salivary proline-rich protein IB5 in the presence of the tannin EgCG. Langmuir 29, 1926–1937 (2013).

    Google Scholar 

  13. Soares, S. et al. Reactivity of human salivary proteins families toward food polyphenols. J. Agric. Food Chem. 59, 5535–5547 (2011).

    Google Scholar 

  14. De Wijk, R. A. & Prinz, J. F. Mechanisms underlying the role of friction in oral texture. J. Texture Stud. 37, 413–427 (2006).

    Google Scholar 

  15. Upadhyay, R., Brossard, N. & Chen, J. Mechanisms underlying astringency: introduction to an oral tribology approach. J. Phys. D: Appl. Phys. 49, 104003 (2016).

    Google Scholar 

  16. Wang, S., Olarte Mantilla, S. M., Smith, P. A., Stokes, J. R. & Smyth, H. E. Astringency sub-qualities drying and pucker are driven by tannin and pH – Insights from sensory and tribology of a model wine system. Food Hydrocoll. 109, 106109 (2020).

    Google Scholar 

  17. Morzel, M., Siying, T., Brignot, H. & Lherminier, J. Immunocytological detection of salivary mucins (MUC5B) on the mucosal pellicle lining human epithelial buccal cells. Microsc. Res. Tech. 77, 453–457 (2014).

    Google Scholar 

  18. Bradway, S. D. et al. Formation of salivary-mucosal pellicle: the role of transglutaminase. Biochem. J. 284, 557–564 (1992).

    Google Scholar 

  19. Gibbins, H., Proctor, G., Yakubov, G., Wilson, S. & Carpenter, G. Concentration of salivary protective proteins within the bound oral mucosal pellicle. Oral Dis. 20, 707–713 (2014).

    Google Scholar 

  20. Canon, F. et al. Perspectives on astringency sensation: an alternative hypothesis on the molecular origin of astringency. J. Agric. Food Chem. 69, 3822–3826 (2021).

    Google Scholar 

  21. Ployon, S. et al. The membrane-associated MUC1 improves adhesion of salivary MUC5B on buccal cells. Application to development of an in vitro cellular model of oral epithelium. Arch. Oral Biol. 61, 149–155 (2016).

    Google Scholar 

  22. Nayak, A. & Carpenter, G. H. A physiological model of tea-induced astringency. Physiol. Behav. 95, 290–294 (2008).

    Google Scholar 

  23. Lei, L., Tang, Y., Zheng, J., Ma, G. & Zhou, Z. Influence of two polyphenols on the structure and lubrication of salivary pellicle: an in vitro study on astringency mechanism. Friction 10, 167–178 (2022).

    Google Scholar 

  24. Brossard, N., Cai, H., Osorio, F., Bordeu, E. & Chen, J. Oral tribological study on the astringency sensation of red wines. J. Texture Stud. 47, 392–402 (2016).

    Google Scholar 

  25. Edmonds, R. S., Finney, T. J., Bull, M. R., Watrelot, A. A. & Kuhl, T. L. Friction measurements of model saliva-wine solutions between polydimethylsiloxane surfaces. Food Hydrocoll. 113, 106522 (2021).

    Google Scholar 

  26. Rossetti, D., Bongaerts, J. H. H., Wantling, E., Stokes, J. R. & Williamson, A. M. Astringency of tea catechins: more than an oral lubrication tactile percept. Food Hydrocoll. 23, 1984–1992 (2009).

    Google Scholar 

  27. Laguna, L. et al. Exploring mouthfeel in model wines: Sensory-to-instrumental approaches. Food Res. Int. 102, 478–486 (2017).

    Google Scholar 

  28. Shimada, T. Salivary proteins as a defense against dietary tannins. J. Chem. Ecol. 32, 1149–1163 (2006).

    Google Scholar 

  29. Bennick, A. Interaction of plant polyphenols with salivary proteins. Crit. Rev. Oral Biol. Med. 13, 184–196 (2002).

    Google Scholar 

  30. Lu, Y. & Bennick, A. Interaction of tannin with human salivary proline-rich proteins. Arch. Oral Biol. 43, 717–728 (1998).

    Google Scholar 

  31. Ammam, I. et al. Exploring the role of the MUC1 mucin in human oral lubrication by tribological in vitro studies. Preprint at. https://doi.org/10.21203/rs.3.rs-4455367/v1 (2024).

    Google Scholar 

  32. Nivet, C. et al. Development of new models of oral mucosa to investigate the impact of the structure of transmembrane mucin-1 on the mucosal pellicle formation and its physicochemical properties. Biomedicines 12, 139 (2024).

    Google Scholar 

  33. Kullaa, A. M., Asikainen, P., Herrala, M., Ukkonen, H. & Mikkonen, J. J. W. Microstructure of oral epithelial cells as an underlying basis for salivary mucosal pellicle. Ultrastruct Pathol. 38, 382–386 (2014).

    Google Scholar 

  34. Macao, B., Johansson, D. G. A., Hansson, G. C. & Härd, T. Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nat. Struct. Mol. Biol. 13, 71–76 (2006).

    Google Scholar 

  35. Levitin, F. et al. The MUC1 SEA module is a Self-cleaving domain. J. Biol. Chem. 280, 33374–33386 (2005).

    Google Scholar 

  36. Lindén, S. K. et al. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog. 5, e1000617 (2009).

    Google Scholar 

  37. Cabiddu, G. et al. Proteomic characterization of the mucosal pellicle formed in vitro on a cellular model of oral epithelium. Journal Proteomics. 222, 103797. ISSN 1874-3919 (2020).

  38. Scharbert, S., Holzmann, N. & Hofmann, T. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J. Agric. Food Chem. 52, 3498–3508 (2004).

    Google Scholar 

  39. Boze, H. et al. Proline-rich salivary proteins have extended conformations. Biophys. J. 99, 656–665 (2010).

    Google Scholar 

  40. Ployon, S. et al. Mechanisms of astringency: structural alteration of the oral mucosal pellicle by dietary tannins and protective effect of bPRPs. Food Chem. 253, 79–87 (2018).

    Google Scholar 

  41. Linden, S. K., Sutton, P., Karlsson, N. G., Korolik, V. & McGuckin, M. A. Mucins in the mucosal barrier to infection. Mucosal Immunol. 1, 183–197 (2008).

    Google Scholar 

Download references