Antifungal properties of Eucalyptus endophytic Streptomyces strains

antifungal-properties-of-eucalyptus-endophytic-streptomyces-strains
Antifungal properties of Eucalyptus endophytic Streptomyces strains

References

  1. Ma, M., Taylor, P. W. J., Chen, D., Vaghefi, N. & He, J. Z. Major soilborne pathogens of field processing tomatoes and management strategies. Microorganisms 11, 263 (2023).

    Google Scholar 

  2. Ramudingana, P. et al. Antagonistic potential of endophytic fungal isolates of tomato (Solanum lycopersicum L.) fruits against post-harvest disease-causing pathogens of tomatoes: an in vitro investigation. Fungal Biol. 128, 1847–1858 (2024).

    Google Scholar 

  3. Bosmaia, T. C. et al. Transcriptomic analysis towards identification of defence-responsive genes and pathways upon application of sargassum seaweed extract on tomato plants infected with Macrophomina Phaseolina. 3 Biotech. 13, 179 (2023).

    Google Scholar 

  4. Khedia, J. et al. Sargassum seaweed extract enhances Macrophomina Phaseolina resistance in tomato by regulating phytohormones and antioxidative activity. J. Appl. Phycol. 32, 4373–4384 (2020).

    Google Scholar 

  5. Morales-Cedeño, L. R. et al. Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiol. Res. 242, 126612 (2021).

    Google Scholar 

  6. Kashyap, N. et al. Biocontrol screening of endophytes: applications and limitations. Plants 12, 2480–2480 (2023).

    Google Scholar 

  7. Ebrahimi, L., Hatami Rad, S. & Etebarian, H. R. Apple endophytic fungi and their antagonism against Apple scab disease. Front. Microbiol. 13, 1024001 (2022).

    Google Scholar 

  8. Kumar, A. Microbial biocontrol: food security and post-harvest management. (Springer Int. Publishing. https://doi.org/10.1007/978-3-030-87289-2 (2022).

    Google Scholar 

  9. Kumari, M. et al. Deciphering the role of endophytic Microbiome in postharvest diseases management of fruits: opportunity areas in commercial up-scale production. Front. Plant. Sci. 13, 1026575 (2022).

    Google Scholar 

  10. Pathak, P. et al. Plant-endophyte interaction during biotic stress management. Plants 11, 2203 (2022).

    Google Scholar 

  11. Aleahmad, P. & Ebrahimi, L. The possible applications of endophytic fungi. RJP 10, 81–94 (2023).

    Google Scholar 

  12. Bonaterra, A. et al. Bacteria as biological control agents of plant diseases. Microorganisms 10, 1759 (2022).

    Google Scholar 

  13. Djebaili, R. et al. Biocontrol of soil-borne pathogens of Solanum lycopersicum L. and Daucus Carota L. by plant growth-promoting actinomycetes: in vitro and in planta antagonistic activity. Pathogens 10, 1305–1305 (2021).

    Google Scholar 

  14. Montesdeoca-Flores, D. T. et al. Antifungal activity of Streptomyces spp. Extracts in vitro and on post-harvest tomato fruits against plant pathogenic fungi. Horticulturae 9, 1319–1319 (2023).

    Google Scholar 

  15. Elawady, M. E. et al. Bioactive metabolite from endophytic Aspergillus versicolor SB5 with anti-acetylcholinesterase, anti-inflammatory and antioxidant activities: in vitro and in Silico studies. Microorganisms 11, 1062–1062 (2023).

    Google Scholar 

  16. Zhang, L. et al. Effect of volatile compounds produced by the cotton endophytic bacterial strain Bacillus sp. T6 against verticillium wilt. BMC Microbiol. 23, 8 (2023).

    Google Scholar 

  17. Raaijmakers, J. M. & Mazzola, M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50, 403–424 (2012).

    Google Scholar 

  18. Ayed, A. et al. Antifungal activity of volatile organic compounds from Streptomyces sp. strain S97 against Botrytis cinerea. Biocontrol Sci. Technol. 31, 1330–1348 (2021).

    Google Scholar 

  19. Corral, D. A. P. et al. Antagonistic effect of volatile and non-volatile compounds from Streptomyces strains on cultures of several phytopathogenic fungi. Emir j. Food agric. 32, 879–889 (2020).

    Google Scholar 

  20. Le, K. D. et al. Streptomyces sp. AN090126 as a biocontrol agent against bacterial and fungal plant diseases. Microorganisms 10, 791 (2022).

    Google Scholar 

  21. Prasannath, K. Plant defense-related enzymes against pathogens: a review. J. Agric. Sci. 11, 38 (2017).

    Google Scholar 

  22. Saravanakumar, K. et al. Cellulase from Trichoderma Harzianum interacts with roots and triggers induced systemic resistance to foliar disease in maize. Sci. Rep. 6, 35543 (2016).

    Google Scholar 

  23. Tran, M. L. et al. Isolation and properties of endophytic bacteria and actinomycetes of Catharanthus roseus (L) G. Don grown in Nha Trang, Vietnam. AJB 46, 71–82 (2024).

    Google Scholar 

  24. El-Akshar, E. A. et al. Endophytic chitinase and antifungal metabolites-producing actinobacteria for biological control of cucumber damping off disease. JPP 107, 469–490 (2024).

    Google Scholar 

  25. Lahmyed, H. et al. Actinomycete as biocontrol agents against tomato Gray mold disease caused by Botrytis cinerea. KJS 48 (3). https://doi.org/10.48129/kjs.v48i3.9200 (2021).

  26. Yun, T. et al. Potential biocontrol of endophytic streptomyces sp. 5 – 4 against fusarium wilt of banana caused by fusarium oxysporum f. sp. cubense tropical race 4. Phytopathology 112, 1877–1885 (2022).

    Google Scholar 

  27. Villafañe, D. L., Maldonado, R. A., Rodríguez, E. & Chiesa, M. A. Endophytic Streptomyces sp. N2A protects soybean against fungal diseases through two distinct mechanisms. BioControl 15, 1–4 (2025).

    Google Scholar 

  28. Ebrahimi-Zarandi, M. et al. Exploring two Streptomyces species to control Rhizoctonia Solani in tomato. Agronomy 11, 1384–1384 (2021).

    Google Scholar 

  29. Lobiuc, A. et al. Future antimicrobials: natural and functionalized phenolics. Molecules 28, 1114 (2023).

    Google Scholar 

  30. Lanzuise, S. et al. Combined biostimulant applications of Trichoderma spp. With fatty acid mixtures improve biocontrol activity, horticultural crop yield and nutritional quality. Agronomy 12, 275 (2022).

    Google Scholar 

  31. Soliman, S. A., Khaleil, M. M. & Metwally, R. A. Evaluation of the antifungal activity of Bacillus amyloliquefaciens and B. velezensis and characterization of the bioactive secondary metabolites produced against plant pathogenic fungi. Biology 11, 1390 (2022).

    Google Scholar 

  32. Alves, D. et al. Exploring the phytochemicals of acacia melanoxylon R. Br. Plants. 10, 2698 (2021).

    Google Scholar 

  33. Thbayh, D. K., Palusiak, M., Viskolcz, B. & Fiser, B. Comparative study of the antioxidant capability of EDTA and Irganox. Heliyon 9, 16064–16064 (2023).

    Google Scholar 

  34. Bashandy, S. R., Mohamed, O. A., Abdalla, O. A., Elfarash, A. & Abd-Alla, M. H. Harnessing plant growth-promoting bacteria to combat watermelon mosaic virus in squash. Sci. Rep. 15, 9440 (2025).

    Google Scholar 

  35. Tariq, A., Salman, M., Ashraf, M. A., Bukhari, S. A. & Mustafa, G. Exploring synergistic effects of Pantoea agglomerans BCH-1 and Bacillus pseudomycoides BCH-3 to enhance maize adaptations under drought condition. J. Soil. Sci. Plant. Nutr. 25, 4747–4766 (2025).

    Google Scholar 

  36. Sharma, N., Yadav, G., koul, M., Joshi, N. C. & Mishra, A. Significance of secondary metabolites elicited by Zhihengliuella sp. ISTPL4 in plant growth promotion under arsenic stress. S Afr. J. Bot. 174, 383–392 (2024).

    Google Scholar 

  37. Ghanem, G. A. M. et al. Efficacy of antifungal substances of three Streptomyces spp. Against different plant pathogenic fungi. Egypt. J. Biol. Pest Control. 32, 112 (2022).

    Google Scholar 

  38. Strobel, G. & Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 67, 491–502 (2003).

    Google Scholar 

  39. Carter-House, D., Stajich, J. E., Unruh, S. & Kurbessoian, T. Fungal CTAB DNA extraction V1. (2020).

  40. lane, D. I. Nucleic acid techniques in bacterial systematics. Nii.ac.jp. https://cir.nii.ac.jp/crid/1370565169361354123 (2024).

  41. Stackebrandt, E. R. K. O. Nucleic acids and classification. Handb. New Bacterial Syst. 151 – 94. Nii.ac.jp . https://cir.nii.ac.jp/crid/1573668924449243520 (2025).

  42. Dennis, C. & Webster, J. Antagonistic properties of specific group of Trichoderma: production of non-volatile antibiotics. Trans. Br. Mycol. Soc. 75, 41–48 (1971).

    Google Scholar 

  43. Etebarian, H. R., Sholberg, P. L., Eastwell, K. C. & Sayler, R. J. Biological control of Apple blue mold with Pseudomonas fluorescens. Can. J. Microbiol. 51, 591–598 (2005).

    Google Scholar 

  44. Lillbro, M. Biocontrol of Penicillium roqueforti on grain -a comparison of mode of action of several yeast species. UNSPECIFIED, Uppsala. https://stud.epsilon.slu.se/11884/1/lillbro_m_171013.pdf (Department of Microbiology, 2005).

  45. Hsu, S. C. & Lockwood, J. L. Powdered Chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl. Microbiol. 29, 422–426 (1975).

    Google Scholar 

  46. Majidi, S., Mohammad, R. & Ghezelbash, G. Carboxymethyl-cellulase and filter-paperase activity of new strains isolated from Persian Gulf. Microbiology 1, 8–16 (2010).

    Google Scholar 

  47. Sperber, J. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Aust J. Agric. Res. 9, 778 (1958).

    Google Scholar 

  48. Herrera-Téllez, V. I. et al. The protective effect of Trichoderma asperellum on tomato plants against Fusarium oxysporum and Botrytis cinerea diseases involves Inhibition of reactive oxygen species production. Int. J. Mol. Sci. 20, 2007–2007 (2019).

    Google Scholar 

  49. Aleahmad, P., Ebrahimi, L., Safaie, N. & Etebarian, H. R. Antagonism of Eucalyptus endophytic fungi against some important crop fungal diseases. Front. Microbiol. 16, 1523127 (2025).

    Google Scholar 

  50. Askarne, L. et al. In vitro and in vivo antifungal activity of different bacterial isolates against botrytis Gray mold of tomato. Not Sci. Biol. 16, 12048 (2024).

    Google Scholar 

  51. Hassanisaadi, M. et al. Biological control of Pythium aphanidermatum, the causal agent of tomato root rot by two Streptomyces root symbionts. Agronomy 11, 846 (2021).

    Google Scholar 

  52. Ebrahimi, L., Tadayon Rad, F. & Lotfi, M. Antagonism of endophytic fungi depends on pathogen and host plant. BioControl 68, 655–668 (2023).

    Google Scholar 

  53. Abbasi, S., Safaie, N., Sadeghi, A. & Shams-Bakhsh, M. Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms. Front. Microbiol. 10, 1505 (2019).

    Google Scholar 

  54. Marlatt, M. L., Correll, J. C., Kaufmann, P. & Cooper, P. E. Two genetically distinct populations of Fusarium oxysporum f. sp. lycopersici race 3 in the united States. Plant. Dis. 80, 1336–1342 (1996).

    Google Scholar 

  55. Etebarian, H. R., Khairi, A., Roustaei, A., Khodakaramian, G. H. & Aminian, H. Evaluation of Pseudomonas isolates for biological control of charcoal stem rot of melon caused by Macrophomina Phaseolina. Acta Hortic. 761, 157–162 (2007). (In Persian).

    Google Scholar 

  56. Paris, R. L., Mengistu, A., Tyler, J. M. & Smith, J. R. Registration of soybean germplasm line DT97-4290 with moderate resistance to charcoal rot. Crop Sci. 46, 2324 (2006).

    Google Scholar 

  57. Dorrance, A. E., Coetzee, J. F., McClure, S. A. & Tuttle, N. T. Temperature, moisture, and seed treatment effects on Rhizoctonia Solani root rot of soybean. Plant. dis. 87, 533–538 (2003).

    Google Scholar 

  58. Niazi, S. K. et al. GC-MS based characterization, antibacterial, antifungal and anti-oncogenic activity of Ethyl acetate extract of Aspergillus Niger strain AK-6 isolated from rhizospheric soil. Curr. Issues Mol. Biol. 45, 3733–3756 (2023).

    Google Scholar 

Download references