References
-
Gramann, K., Ferris, D. P., Gwin, J. & Makeig, S. Imaging natural cognition in action. Int. J. Psychophysiol. 91, 22–29 (2014).
-
Daly, J. J. & Wolpaw, J. R. Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 7, 1032–1043 (2008).
-
Thompson, T., Steffert, T., Ros, T., Leach, J. & Gruzelier, J. EEG applications for sport and performance. Methods 45, 279–288 (2008).
-
Michel, V., Mazzola, L., Lemesle, M. & Vercueil, L. Long-term EEG in adults: sleep-deprived EEG (SDE), ambulatory EEG (Amb-EEG) and long-term video-EEG recording (LTVER). Neurophysiol. Clin. 45, 47–64 (2015).
-
De Vos, M. & Debener, S. Mobile EEG: towards brain activity monitoring during natural action and cognition. Int. J. Psychophysiol. 91, 1–2 (2014).
-
Wang, C. et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci. Adv. 8, eabo1396 (2022).
-
Zheng, K. et al. Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano Micro Lett. 17, 281 (2025).
-
Vanhatalo, S., Alnajjar, A., Nguyen, V. T., Colditz, P. & Fransson, P. Safety of EEG–fMRI recordings in newborn infants at 3T: a study using a baby-size phantom. Clin. Neurophysiol. 125, 941–946 (2014).
-
Walls-Esquivel, E., Vecchierini, M. F., Héberlé, C. & Wallois, F. Electroencephalography (EEG) recording techniques and artefact detection in early premature babies. Neurophysiol. Clin. 37, 299–309 (2007).
-
Awal, M. A., Lai, M. M., Azemi, G., Boashash, B. & Colditz, P. B. EEG background features that predict outcome in term neonates with hypoxic ischaemic encephalopathy: a structured review. Clin. Neurophysiol. 127, 285–296 (2016).
-
Yang, Y. et al. Breathable electronic skins for daily physiological signal monitoring. Nano Micro Lett. 14, 161 (2022).
-
Li, G.-L., Wu, J.-T., Xia, Y.-H., He, Q.-G. & Jin, H.-G. Review of semi-dry electrodes for EEG recording. J. Neural Eng. 17, 051004 (2020).
-
Pedrosa, P. et al. Alginate-based hydrogels as an alternative to electrolytic gels for rapid EEG monitoring and easy cleaning procedures. Sens. Actuators B: Chem. 247, 273–283 (2017).
-
Xu, P. et al. Conductive and elastic bottlebrush elastomers for ultrasoft electronics. Nat. Commun. 14, 623 (2023).
-
Wang, F. et al. 3D Printed implantable hydrogel bioelectronics for electrophysiological monitoring and electrical modulation. Adv. Funct. Mater. 34, 2314471 (2024).
-
Li, T., Qi, H., Dong, X., Li, G. & Zhai, W. Highly robust conductive organo-hydrogels with powerful sensing capabilities under large mechanical stress. Adv. Mater. 36, 2304145 (2024).
-
Zhao, Y. et al. A self-healing electrically conductive organogel composite. Nat. Electron. 6, 206–215 (2023).
-
Li, G., Wang, S., Li, M. & Duan, Y. Y. Towards real-life EEG applications: novel superporous hydrogel-based semi-dry EEG electrodes enabling automatically ‘charge–discharge’ electrolyte. J. Neural Eng. 18, 046016 (2021).
-
Alba, N. A., Sclabassi, R. J., Sun, M. & Cui, X. T. Novel hydrogel-based preparation-free EEG electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 415–423 (2010).
-
Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).
-
Mo, F., Zhou, P., Lin, S., Zhong, J. & Wang, Y. A review of conductive hydrogel-based wearable temperature sensors. Adv. Healthc. Mater. 13, 2401503 (2024).
-
Luo, J. et al. MXene-enabled self-adaptive hydrogel interface for active electroencephalogram interactions. ACS Nano. 16, 19373–19384 (2022).
-
Fan, Y., Deng, C., Cheng, R., Meng, F. & Zhong, Z. In situ forming hydrogels via catalyst-free and bioorthogonal “tetrazole–alkene” photo-click chemistry. Biomacromol. 14, 2814–2821 (2013).
-
Li, L. et al. Paintable, fast gelation, highly adhesive hydrogels for high-fidelity electrophysiological monitoring wirelessly. Small 21, 2407996 (2024).
-
Huang, Y. J., Wu, C. Y., Wong, A. M. K. & Lin, B. S. Novel active comb-shaped dry electrode for EEG measurement in hairy site. IEEE Trans. Biomed. Eng. 62, 256–263 (2015).
-
Norton, J. J. S. et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proc. Natl. Acad. Sci. 112, 3920–3925 (2015).
-
Zhang, Y., Wang, Y., Guan, Y. & Zhang, Y. Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions. Nat. Commun. 13, 6671 (2022).
-
Owyeung, R., Zeng, W. & Sonkusale, S. Eutectogel electrodes for long-term biosignal monitoring. In 2022 IEEE Sens (IEEE, 2022).
-
Zhong, Y. et al. Eutectogels as a semisolid electrolyte for organic electrochemical transistors. Chem. Mater. 36, 1841–1854 (2024).
-
Li, Y. et al. Fully degradable protein gels with superior mechanical properties and durability: regulation of hydrogen bond donors. Adv. Mater. 37, 2506577 (2025).
-
Luo, J. et al. On-skin paintable water-resistant biohydrogel for wearable bioelectronics. Adv. Funct. Mater. 34, 2400884 (2024).
-
Yang, Z. et al. An on-skin-formed silk protein bioelectrode for conformable and robust electrophysiological interface. Adv. Funct. Mater. 34, 2402608 (2024).
-
Chen, J. X. M. et al. Conductive bio-based hydrogel for wearable electrodes via direct ink writing on skin. Adv. Funct. Mater. 34, 2403721 (2024).
-
Lan, L. et al. Skin-inspired all-natural biogel for bioadhesive interface. Adv. Mater. 36, 2401151 (2024).
-
Hsieh, J.-C. et al. Design of an injectable, self-adhesive, and highly stable hydrogel electrode for sleep recording. Device 2, 100182 (2024).
-
Niu, W., Tian, Q., Liu, Z. & Liu, X. Solvent-free and fkin-like supramolecular ion-conductive elastomers with versatile processability for multifunctional ionic tattoos and on-skin bioelectronics. Adv. Mater. 35, 2304157 (2023).
-
Kishore, R. A., Nozariasbmarz, A., Poudel, B., Sanghadasa, M. & Priya, S. Ultra-high performance wearable thermoelectric coolers with less materials. Nat. Commun. 10, 1765 (2019).
-
Baumgartner, M. et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102–1109 (2020).
-
Chen, Y. et al. Gelatin-based metamaterial hydrogel films with high conformality for ultra-soft tissue monitoring. Nano-Micro Lett. 16, 34 (2023).
-
Han, L. et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv. Funct. Mater. 28, 1704195 (2018).
-
Jin, Q. et al. Quadruple H-bonding and polyrotaxanes dual cross-linking supramolecular elastomer for high toughness and self-healing conductors. Angew. Chem. Int. Ed. 62, e202305282 (2023).
-
Parker, N. G. & Povey, M. J. W. Ultrasonic study of the gelation of gelatin: phase diagram, hysteresis and kinetics. Food Hydrocoll. 26, 99–107 (2012).
-
Hoang Thi, T. T. et al. Supramolecular cyclodextrin supplements to improve the tissue adhesion strength of gelatin bioglues. ACS Macro Lett. 6, 83–88 (2017).
-
Li, X. et al. Body temperature-triggered adhesive ionic conductive hydrogels for bioelectrical signal monitoring. Chem. Eng. J. 498, 155195 (2024).
-
Moufawad, T. et al. First evidence of cyclodextrin inclusion complexes in a deep eutectic solvent. ACS Sustain. Chem. Eng. 7, 6345–6351 (2019).
-
Dong, J. et al. Viscoelastic adhesive, super-conformable, and semi-flowable liquid metal eutectogels for high-fidelity electrophysiological monitoring. ACS Appl. Mater. Interfaces 16, 34732–34742 (2024).
-
Li, T. et al. Robust skin-integrated conductive biogel for high-fidelity detection under mechanical stress. Nat. Commun. 16, 88 (2025).
-
Han, Q. et al. Hydrogel nanoarchitectonics of a flexible and self-adhesive electrode for long-term wireless electroencephalogram recording and high-accuracy sustained attention evaluation. Adv. Mater. 35, 2209606 (2023).
-
Scalco de Vasconcelos, L. et al. On-scalp printing of personalized electroencephalography e-tattoos. Cell Biomater. 1, 100004 (2025).
-
Rakowska, M., Abdellahi, M. E. A., Bagrowska, P., Navarrete, M. & Lewis, P. A. Long term effects of cueing procedural memory reactivation during NREM sleep. Neuroimage 244, 118573 (2021).
-
Sajidah, H., Khairunnisa, S. & Nabila, C. The effect of relaxing a deep breath on anxiety levels. KESANS Int. J. Health Sci. 1, 88–95 (2021).
-
Anusha, A. S. et al. Brain-scale theta band functional connectome as signature of slow breathing and breath-hold phases. Comput. Biol. Med. 184, 109435 (2025).
-
Klimesch, W. et al. Alpha and beta band power changes in normal and dyslexic children. Clin. Neurophysiol. 112, 1186–1195 (2001).
-
Vitu, F., Kapoula, Z., Lancelin, D. & Lavigne, F. Eye movements in reading isolated words: evidence for strong biases towards the center of the screen. Vis. Res. 44, 321–338 (2004).
-
Ding, Y., Hu, X., Xia, Z., Liu, Y. J. & Zhang, D. Inter-Brain EEG feature extraction and analysis for continuous implicit emotion tagging during video watching. IEEE Trans. Affect. Comput. 12, 92–102 (2021).
-
Walker, J. L. Changes in EEG rhythms during television viewing: preliminary comparisons with reading and other tasks. Percept. Mot. Skills 51, 255–261 (1980).
-
Pfurtscheller, G. & Lopes da Silva, F. H. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999).
-
Wagner, J. et al. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage 63, 1203–1211 (2012).
-
Van Son, D. et al. Frontal EEG theta/beta ratio during mind wandering episodes. Biol. Psychol. 140, 19–27 (2019).
-
Huh, H. et al. A wireless forehead e-tattoo for mental workload estimation. Device 3, 100781 (2025).
-
Ngoc, N. N., Nguyen, C. D. & Duc, T. V. Visualizing brain signals in mental calculation by using Electroencephalography Topographic Map Animation with Independent component analysis perspectives. J. Phys. Conf. Ser. 2949, 012013 (2025).
