References
-
Weidemüller, P., Kholmatov, M., Petsalaki, E. & Zaugg, J. B. Transcription factors: bridge between cell signaling and gene regulation. Proteomics 21, e2000034 (2021).
-
Cheng, F., Tang, X. L. & Kardashliev, T. Transcription factor-based biosensors in high-throughput screening: advances and applications. Biotechnol. J. 13, e1700648 (2018).
-
Rogers, J. K. & Church, G. M. Genetically encoded sensors enable real-time observation of metabolite production. Proc. Natl. Acad. Sci. USA 113, 2388–2393 (2016).
-
Zhang, F., Carothers, J. M. & Keasling, J. D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30, 354–359 (2012).
-
Zhang, Y. et al. Biosensor for branched-chain amino acid metabolism in yeast and applications in isobutanol and isopentanol production. Nat. Commun. 13, 1–14 (2022).
-
Pham, C., Stogios, P. J., Savchenko, A. & Mahadevan, R. Advances in engineering and optimization of transcription factor-based biosensors for plug-and-play small molecule detection. Curr. Opin. Biotechnol. 76, 102753 (2022).
-
Lu, M. et al. Transcription factor-based biosensor: a molecular-guided approach for advanced biofuel synthesis. Biotechnol. Adv. 72, 108339 (2024).
-
Gao, J. S. et al. Design of a genetically encoded biosensor to establish a high-throughput screening platform for L-cysteine overproduction. Metab. Eng. 73, 144–157 (2022).
-
Gong, X. Y. et al. Engineering of a TrpR-based biosensor for altered dynamic range and ligand preference. ACS Synth. Biol. 11, 2175–2183 (2022).
-
Chen, Y. et al. Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors. Nat. Commun. 9, 64 (2018).
-
D’Ambrosio, V. et al. Directed evolution of VanR biosensor specificity in Yeast. Biotechnol. Notes. 1, 9–15 (2020).
-
Li, J. et al. Engineering transcription factor xylS for sensing phthalic acid and terephthalic acid: an application for enzyme evolution. ACS Synth. Biol. 11, 1106–1113 (2022).
-
Wu, T. et al. Engineering transcription factor BmoR mutants for constructing multifunctional alcohol biosensors. ACS Synth. Biol. 11, 1251–1260 (2022).
-
Swint-Kruse, L. & Matthews, K. S. Allostery in the LacI/GalR family: variations on a theme. Curr. Opin. Microbiol. 12, 129–137 (2009).
-
Tack, D. S. et al. The genotype-phenotype landscape of an allosteric protein. Mol. Syst. Biol. 17, e10179 (2021).
-
Yuan, Y., Deng, J. & Cui, Q. Molecular dynamics simulations establish the molecular basis for the broad allostery hotspot distributions in the tetracycline repressor. J. Am. Chem. Soc. 144, 10870–10887 (2022).
-
Suckow, J. et al. Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J. Mol. Biol. 260, 509–523 (1996).
-
Fu, G. et al. An operator-based expression toolkit for Bacillus subtilis enables fine-tuning of gene expression and biosynthetic pathway regulation. Proc. Natl. Acad. Sci. USA. 119, e2119980119 (2022).
-
Rosano, G. L. & Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5, 172 (2014).
-
Li, Y. et al. A cross-species inducible system for enhanced protein expression and multiplexed metabolic pathway fine-tuning in bacteria. Nucleic Acids Res. 53, gkae1315 (2025).
-
Lewis, M. et al. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science. 271, 1247–1254 (1996).
-
Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mole. Biol. 3, 318–356 (1961).
-
Li, Z., Kessler, W., van den, Heuvel, J. & Rinas, U. Simple defined autoinduction medium for high-level recombinant protein production using T7-based Escherichia coli expression systems. Appl. Microbiol. Biotechnol. 91, 1203–1213 (2011).
-
Landberg, J., Mundhada, H. & Nielsen, A. T. An autoinducible trp-T7 expression system for production of proteins and biochemicals in Escherichia coli. Biotechnol. Bioeng. 117, 1513–1524 (2020).
-
Liu, M. et al. OptoLacI: optogenetically engineered lactose operon repressor LacI responsive to light instead of IPTG. Nucleic Acids Res. 52, 8003–8016 (2024).
-
Zhang, Y. et al. Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum. Appl. Environ. Microbiol. 78, 5831–5838 (2012).
-
Tang, R.-Q. et al. Design, evolution, and characterization of a xylose biosensor in Escherichia coli using the XylR/xylO system with an expanded operating range. ACS Synth. Biol. 9, 2714–2722 (2020).
-
Yue, J., Fu, G., Zhang, D. & Wen, J. A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis. Biotechnol. Lett. 39, 1237–1244 (2017).
-
Armetta, J. et al. Biosensor-based enzyme engineering approach applied to psicose biosynthesis. Synth. Biol. 4, 1–10 (2019).
-
Xu, B. et al. Directed evolution of Escherichia coli Nissle 1917 to utilize allulose as sole carbon source. Small Methods. 8, 2301385 (2024)
-
Xie, X., Li, C., Ban, X., Yang, H., & Li, Z. D-allulose 3-epimerase for low-calorie D-allulose synthesis: microbial production, characterization, and applications. Crit. Rev. Biotechnol. 45, 353–372 (2024)
-
Li, C. et al. Growth-coupled evolutionary pressure improving epimerases for D-allulose biosynthesis using a biosensor-assisted in vivo selection platform. Adv. Sci. 11, 2306478 (2024).
-
Du, Y. et al. Construction of an ultra-strong PtacM promoter via engineering the core-element spacer and 5’untranslated region for versatile applications in Corynebacterium glutamicum. Biotechnol. Notes. 3, 88–96 (2022).
-
Yim, S. S., An, S. J., Kang, M., Lee, J. & Jeong, K. J. Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol. Bioeng. 110, 2959–2969 (2013).
-
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
-
Liao, Q. et al. Long time-scale atomistic simulations of the structure and dynamics of transcription factor-DNA recognition. J. Phys. Chem. B. 123, 3576–3590 (2019).
-
Xu, J., Liu, S., Chen, M., Ma, J. & Matthews, K. S. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor. Biochemistry 50, 9002–9013 (2011).
-
Fu, Y. et al. Structural and functional analyses of the cellulase transcription regulator CelR. FEBS Lett 592, 2776–2785 (2018).
-
Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).
-
Fu, H., Shao, X., Cai, W. & Chipot, C. Taming rugged free energy landscapes using an average force. Acc. Chem. Res. 52, 3254–3264 (2019).
-
Zong, Z. et al. Elucidation of the noncovalent interactions driving enzyme activity guides branching enzyme engineering for α-glucan modification. Nat. Commun. 15, 8760 (2024).
-
Zhou, J. et al. Structural basis for the acylation reaction of alphacoronavirus 3C-like protease. ACS Catal. 14, 8330–8342 (2024).
-
Yu, H. & Dalby, P. A. Coupled molecular dynamics mediate long-and short-range epistasis between mutations that affect stability and aggregation kinetics. Proc. Natl. Acad. Sci. USA. 115, 1810324115 (2018).
-
Glasgow, A. et al. Ligand-specific changes in conformational flexibility mediate long-range allostery in the lac repressor. Nat. Commun. 14, 1179 (2023).
-
Lu, C. et al. Site-resolved energetic information from HX–MS experiments. Nat. Chem. Biol. https://doi.org/10.1038/s41589-025-02049-1 (2025).
-
Wells, M. L. et al. Conserved energetic changes drive function in an ancient protein fold. bioRxiv https://doi.org/10.1101/2025.04.02.646877 (2025).
-
Hellman, L. & Fried, M. Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nat. Protoc. 2, 1849–1861 (2007).
-
Jerabek-Willemsen, M. et al. Microscale thermophoresis: interaction analysis and beyond. J. Mol. Struct. 1077, 101–113 (2014).
-
Jin, P. et al. Efficient bioconversion of high-concentration d-fructose into d-mannose by a novel N-acyl-d-glucosamine 2-epimerase from Thermobifida halotolerans. Catal. Sci. Technol. 11, 1922–1930 (2021).
-
Cui, W. et al. Creation of an orthogonal and universal auto-inducible gene expression platform by reprogramming a two-component signal circuit for efficient production of industrial enzymes. Int. J. Biol. Macromol. 283, 137781 (2024).
-
Brüsseler, C. et al. The myo-inositol/proton symporter IolT1 contributes to d-xylose uptake in Corynebacterium glutamicum. Bioresource Technol. 249, 953–961 (2017).
-
Liu, Y. et al. Microbial synthesis of sedoheptulose from glucose by metabolically engineered Corynebacterium glutamicum. Microb. Cell Fact. 23, 251 (2024).
-
Yang, J. et al. De novo artificial synthesis of hexoses from carbon dioxide. Sci. Bull. 68, 2370–2381 (2023).
-
Liu, J., Zhang, W. & Rao, Z. Transcriptional regulator-based biosensors for biomanufacturing in Corynebacterium glutamicum. Microbiol. Res. 297, 128169 (2025).
-
Liu, Z. et al. Optimization of ultrahigh-throughput screening assay for protein engineering of D-allulose 3-epimerase. Biomolecules. 12, 1547 (2022).
-
Chen, B. et al. Biosensor-assisted evolution of RhaD for enhancing the biosynthetic yield of d-allulose. Food Biosci. 60, 104426 (2024).
-
Yao, Z. et al. Unlocking green biomanufacturing potential: superior heterologous gene expression with a T7 integration overexpression system in Bacillus subtilis. ACS. Synth. Biol. 14, 1977–1987 (2024).
-
Wilms, B. et al. High-cell-density fermentation for production of L-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol. Bioeng. 73, 95–103 (2001).
-
Tan, S. Z. & Prather, K. L. Dynamic pathway regulation: recent advances and methods of construction. Curr. Opin. Chem. Biol. 41, 28–35 (2017).
-
Hauk, P. et al. Homologous quorum sensing regulatory circuit: a dual-input genetic controller for modulating quorum sensing-mediated protein expression in E. coli. ACS Synth Biol. 9, 2692–2702 (2020).
-
Zhang, W. et al. d-allulose, a versatile rare sugar: recent biotechnological advances and challenges. Crit. Rev. Food Sci. Nutr. 63, 5661–5679 (2023).
-
Men, Y. et al. Co-expression of d-glucose isomerase and d-psicose 3-epimerase: development of an efficient one-step production of d-psicose. Enzyme Microb. Technol. 64, 1–5 (2014).
-
Li, Z. et al. Engineering Corynebacterium glutamicum for the efficient production of N-acetylglucosamine. Bioresour. Technol. 390, 129865 (2023).
-
Lee, Y.-G. et al. De novo biosynthesis of 2’-fucosyllactose by bioengineered Corynebacterium glutamicum. Biotechnol. J. 19, 2300461 (2024).
-
Tian, C. et al. Artificially designed routes for the conversion of starch to value-added mannosyl compounds through coupling in vitro and in vivo metabolic engineering strategies. Metab. Eng. 61, 215–224 (2020).
-
Yang, J. et al. Biosynthesis of rare ketoses through constructing a recombination pathway in an engineered Corynebacterium glutamicum. Biotechnol. Bioeng. 112, 168–180 (2015).
-
Wu, Y. et al. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis. Biotechnol. Bioeng. 117, 1817–1825 (2020).
-
Li, M. et al. Efficient multiplex gene repression by CRISPR-dCpf1 in Corynebacterium glutamicum. Front. Bioeng. Biotechnol. 8, 357 (2020).
-
Yang, J. et al. Development of food-grade expression system for d-allulose 3-epimerase preparation with tandem isoenzyme genes in Corynebacterium glutamicum and its application in conversion of cane molasses to d-allulose. Biotechnol. Bioeng. 116, 745–756 (2019).
-
Engler, C. & Marillonnet, S. Golden Gate cloning. Methods Mol. Biol. 1116, 119–131 (2014).
