Hybrid 3D-printed/electrospun scaffolds drive myogenic differentiation of mesenchymal stem cells (MSCs)

hybrid-3d-printed/electrospun-scaffolds-drive-myogenic-differentiation-of-mesenchymal-stem-cells-(mscs)
Hybrid 3D-printed/electrospun scaffolds drive myogenic differentiation of mesenchymal stem cells (MSCs)

Data availability

All data supporting the findings of this study are included within the article and its Supplementary Information files. Additional datasets generated and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Zhou, J. & Shi, Y. Mesenchymal stem/stromal cells (MSCs): origin, immune regulation, and clinical applications. Cell Mol. Immunol. 20, 555–557. https://doi.org/10.1038/s41423-023-01034-9 (2023).

    Google Scholar 

  2. Song, N., Scholtemeijer, M. & Shah, K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol. Sci. 41, 653–664. https://doi.org/10.1016/j.tips.2020.06.009 (2020).

    Google Scholar 

  3. Hofer, H. R. & Tuan, R. S. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell. Res. Ther. 7, 131. https://doi.org/10.1186/s13287-016-0394-0 (2016).

    Google Scholar 

  4. Müller, L. et al. Immunomodulatory properties of mesenchymal stromal cells: an update. Front. Cell. Dev. Biol. 9, 637725. https://doi.org/10.3389/fcell.2021.637725 (2021).

    Google Scholar 

  5. Vater, C., Kasten, P. & Stiehler, M. Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater. 7, 463–477. https://doi.org/10.1016/j.actbio.2010.07.037 (2011).

    Google Scholar 

  6. Ferreira, J. R. et al. Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Front. Immunol. 9–2018. https://doi.org/10.3389/fimmu.2018.02837 (2018).

  7. Almalki, S. G. & Agrawal, D. K. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 92, 41–51. https://doi.org/10.1016/j.diff.2016.02.005 (2016).

    Google Scholar 

  8. Ghasemi-Mobarakeh, L. et al. Structural properties of scaffolds: crucial parameters towards stem cells differentiation. World J. Stem Cells. 7, 728–744. https://doi.org/10.4252/wjsc.v7.i4.728 (2015).

    Google Scholar 

  9. Wu, D. et al. Bioinstructive scaffolds enhance stem cell engraftment for functional tissue regeneration. Nat. Mater. 24, 1364–1374. https://doi.org/10.1038/s41563-025-02212-y (2025).

    Google Scholar 

  10. Su, N. et al. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: A new dimension in cell-material interaction. Biomaterials 141, 74–85. https://doi.org/10.1016/j.biomaterials.2017.06.028 (2017).

    Google Scholar 

  11. Zulkifli, M. Z. A., Nordin, D., Shaari, N. & Kamarudin, S. K. Overview of electrospinning for tissue engineering applications. Polym. (Basel). 15 https://doi.org/10.3390/polym15112418 (2023).

  12. Pisani, S. et al. Assessment of different manufacturing techniques for the production of bioartificial scaffolds as soft organ transplant substitutes. Front. Bioeng. Biotechnol. 11 https://doi.org/10.3389/fbioe.2023.1186351 (2023).

  13. Ejiohuo, O. A perspective on the synergistic use of 3D printing and electrospinning to improve nanomaterials for biomedical applications. Nano Trends. 4, 100025. https://doi.org/10.1016/j.nwnano.2023.100025 (2023).

    Google Scholar 

  14. Abdullah, K. K. & Molnár, K. Current trends and future prospects of integrating electrospinning with 3d printing techniques for mimicking bone extracellular matrix scaffolds. J. Polym. Sci. 63, 1481–1504. https://doi.org/10.1002/pol.20241010 (2025).

    Google Scholar 

  15. Pisani, S. et al. Nanofibrous scaffolds’ ability to induce mesenchymal stem cell differentiation for soft tissue regenerative applications. Pharmaceuticals 18, 239 (2025).

    Google Scholar 

  16. Mishra, A., Modi, U., Sharma, R., Bhatia, D. & Solanki, R. Biochemical and biophysical cues of the extracellular matrix modulates stem cell fate: progress and prospect in extracellular matrix mimicking biomaterials. Biomedical Eng. Adv. 9, 100143. https://doi.org/10.1016/j.bea.2024.100143 (2025).

    Google Scholar 

  17. Khan, A. R. et al. Advances in smart hybrid scaffolds: A strategic approach for regenerative clinical applications. Eng. Regeneration. 6, 85–110. https://doi.org/10.1016/j.engreg.2025.02.002 (2025).

    Google Scholar 

  18. Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495. https://doi.org/10.1083/jcb.9.2.493 (1961).

    Google Scholar 

  19. Ganassi, M., Badodi, S., Wanders, K., Zammit, P. S. & Hughes, S. M. Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis. Elife 9 https://doi.org/10.7554/eLife.60445 (2020).

  20. Yang, W. & Hu, P. Skeletal muscle regeneration is modulated by inflammation. J. Orthop. Translat. 13, 25–32. https://doi.org/10.1016/j.jot.2018.01.002 (2018).

    Google Scholar 

  21. Alarcin, E. et al. Current strategies for the regeneration of skeletal muscle tissue. Int. J. Mol. Sci. 22 https://doi.org/10.3390/ijms22115929 (2021).

  22. Helal, M. A. M., Shaheen, N. E. M. & Abu Zahra, F. A. Immunomodulatory capacity of the local mesenchymal stem cells transplantation after severe skeletal muscle injury in female rats. Immunopharmacol. Immunotoxicol. 38, 414–422. https://doi.org/10.1080/08923973.2016.1222617 (2016).

    Google Scholar 

  23. Yu, D. et al. Myogenic differentiation of stem cells for skeletal muscle regeneration. Stem Cells Int. 2021 (8884283). https://doi.org/10.1155/2021/8884283 (2021).

  24. Stern-Straeter, J. et al. Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells. Int. J. Mol. Med. 33, 160–170. https://doi.org/10.3892/ijmm.2013.1555 (2014).

    Google Scholar 

  25. Goldshmid, R. et al. Modulus-dependent effects on neurogenic, myogenic, and chondrogenic differentiation of human mesenchymal stem cells in three-dimensional hydrogel cultures. J. Biomed. Mater. Res. A. 111, 1441–1458. https://doi.org/10.1002/jbm.a.37545 (2023).

    Google Scholar 

  26. Mohamadali, M., Irani, S., Soleimani, M. & Hosseinzadeh, S. PANi/PAN copolymer as scaffolds for the muscle cell-like differentiation of mesenchymal stem cells. Polym. Adv. Technol. 28, 1078–1087. https://doi.org/10.1002/pat.4000 (2017).

    Google Scholar 

  27. Ardeshirylajimi, A., Ghaderian, S. M. H., Omrani, M. D. & Moradi, S. L. Biomimetic scaffold containing PVDF nanofibers with sustained TGF-β release in combination with AT-MSCs for bladder tissue engineering. Gene 676, 195–201. https://doi.org/10.1016/j.gene.2018.07.046 (2018).

    Google Scholar 

  28. Awadalla, A. et al. Electrospun nanostructured heparin conjugated-poly-ε-caprolactone based scaffold promote differentiation of smooth muscle cells from adipose mesenchymal stem cells. Process Biochem. 143, 148–162. https://doi.org/10.1016/j.procbio.2024.04.038 (2024).

    Google Scholar 

  29. Yang, M. et al. Electrospinning aligned SF/magnetic nanoparticles-blend nanofiber scaffolds for inducing skeletal myoblast alignment and differentiation. ACS Appl. Bio Mater. 7, 7710–7718. https://doi.org/10.1021/acsabm.4c01198 (2024).

    Google Scholar 

  30. Hoffman, J., Zheng, S., Zhang, H., Murphy, R. F. & Dahl, K. N. Image-based discrimination of the early stages of mesenchymal stem cell differentiation. Mol. Biol. Cell. 35, ar103. https://doi.org/10.1091/mbc.E24-02-0095 (2024).

    Google Scholar 

  31. Gasparotto, M. et al. 3D printed graphene-PLA scaffolds promote cell alignment and differentiation. Int. J. Mol. Sci. 23, 1736 (2022).

    Google Scholar 

  32. Han, P., Gomez, G. A., Duda, G. N., Ivanovski, S. & Poh, P. S. P. Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomater. 163, 259–274. https://doi.org/10.1016/j.actbio.2022.01.020 (2023).

    Google Scholar 

  33. Guimarães, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Reviews Mater. 5, 351–370. https://doi.org/10.1038/s41578-019-0169-1 (2020).

    Google Scholar 

  34. Bonaldi, L. et al. Mechanical characterization of human fascia lata: uniaxial tensile tests from fresh-frozen cadaver samples and constitutive modelling. Bioeng. (Basel). 10 https://doi.org/10.3390/bioengineering10020226 (2023).

  35. Sooriyaarachchi, D., Minière, H. J., Maharubin, S. & Tan, G. Z. Hybrid additive microfabrication scaffold incorporated with highly aligned nanofibers for musculoskeletal tissues. Tissue Eng. Regenerative Med. 16, 29–38. https://doi.org/10.1007/s13770-018-0169-z (2019).

    Google Scholar 

  36. Choi, J. S., Lee, S. J., Christ, G. J., Atala, A. & Yoo, J. J. The influence of electrospun aligned poly(ɛ-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29, 2899–2906. https://doi.org/10.1016/j.biomaterials.2008.03.031 (2008).

    Google Scholar 

  37. Yeo, M. & Kim, G. Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation. Acta Biomater. 107, 102–114. https://doi.org/10.1016/j.actbio.2020.02.042 (2020).

    Google Scholar 

Download references

Acknowledgements

Porcine mesenchymal stem cells (p-MSCs) were kindly provided by the Cell Factory of the Fondazione IRCCS Policlinico San Matteo (Pavia, Italy), where they were isolated from bone marrow aspirates. The authors gratefully acknowledge the valuable technical support and collaboration of Dr. Patria Comoli, Dr. Maria Antonietta Avanzini, and Dr. Stefania Croce.

Funding

This work was supported by the Italian Ministry of Health, RC-2021-n.986-rcr2021i-24, “3D-hybrid engineered tubular bioscaffold for esophageal tissue regeneration: from in vitro to in vivo validation”.

Author information

Authors and Affiliations

  1. Department of Drug Sciences, University of Pavia, Via Taramelli 12, Pavia, 27100, Italy

    Silvia Pisani & Bice Conti

  2. Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy

    Silvia Pisani, Aleksandra Evangelista, Marco Benazzo & Bice Conti

  3. Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, 27100, Italy

    Stefania Marconi, Beatrice Rossetti & Ferdinando Auricchio

  4. Clinical 3D Lab -3D4Med, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy

    Stefania Marconi & Ferdinando Auricchio

  5. Department of Clinical-Surgical, Diagnostic, And Pediatric Sciences – Integrated Unit Of Experimental Surgery, Advanced Microsurgery, And Regenerative Medicine, University of Pavia, Via Ferrata 9, Pavia, 27100, Italy

    Marco Benazzo

  6. Clinical Skills Lab – U.O.C. Presidenza di Medicina – Servizio Medicina e Post-Laurea, University of Pavia, Pavia, 27100, Italy

    Valeria Mauri

  7. Department of Chemistry, Physical Chemistry Section, Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (C.S.G.I.), University of Pavia, Pavia, 27100, Italy

    Giovanna Bruni

Authors

  1. Silvia Pisani
  2. Stefania Marconi
  3. Valeria Mauri
  4. Beatrice Rossetti
  5. Aleksandra Evangelista
  6. Giovanna Bruni
  7. Marco Benazzo
  8. Ferdinando Auricchio
  9. Bice Conti

Contributions

SP conducted the experiments and drafted the manuscript. GB and BR conducted the experiments. BC contributed to the data interpretation and revised the manuscript. AE and VM contributed to the data interpretation. SM and BR analyzed the results. BC, MB, FA contributed to conceptualization, study design, resources, supervision, data analysis and interpretation, draft, and completed manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Silvia Pisani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisani, S., Marconi, S., Mauri, V. et al. Hybrid 3D-printed/electrospun scaffolds drive myogenic differentiation of mesenchymal stem cells (MSCs). Sci Rep (2025). https://doi.org/10.1038/s41598-025-31586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-31586-x

Keywords