References
-
Binder, D. et al. Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity. Metab. Eng. 42, 145–156 (2017).
-
Levy, S. F., Ziv, N. & Siegal, M. L. Bet Hedging in Yeast by Heterogeneous, Age-Correlated Expression of a Stress Protectant. PLOS Biol. 10, e1001325 (2012).
-
Avraham, N., Soifer, I., Carmi, M. & Barkai, N. Increasing population growth by asymmetric segregation of a limiting resource during cell division. Mol. Syst. Biol. 9, 656 (2013).
-
Solopova, A. et al. Bet-hedging during bacterial diauxic shift. Proc. Natl. Acad. Sci. 111, 7427–7432 (2014).
-
van Heerden, J. H. et al. Lost in Transition: Start-Up of Glycolysis Yields Subpopulations of Nongrowing Cells. Science 343, 1245114 (2014).
-
Bagamery, L. E., Justman, Q. A., Garner, E. C. & Murray, A. W. A Putative Bet-Hedging Strategy Buffers Budding Yeast against Environmental Instability. Curr. Biol. 30, 4563–4578.e4 (2020).
-
Shabestary, K. et al. Phenotypic heterogeneity follows a growth-viability tradeoff in response to amino acid identity. Nat. Commun. 15, 6515 (2024).
-
Varahan, S., Sinha, V., Walvekar, A., Krishna, S. & Laxman, S. Resource plasticity-driven carbon-nitrogen budgeting enables specialization and division of labor in a clonal community. eLife 9, e57609 (2020).
-
Kamrad, S. et al. Metabolic heterogeneity and cross-feeding within isogenic yeast populations captured by DILAC. Nat. Microbiol. 8, 441–454 (2023).
-
Hu, K. K. Y., Suri, A., Dumsday, G. & Haritos, V. S. Cross-feeding promotes heterogeneity within yeast cell populations. Nat. Commun. 15, 418 (2024).
-
Mustafi, N. et al. Application of a Genetically Encoded Biosensor for Live Cell Imaging of L-Valine Production in Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum Strains. PLOS ONE 9, e85731 (2014).
-
Münch, K. M. et al. Polar Fixation of Plasmids during Recombinant Protein Production in Bacillus megaterium Results in Population Heterogeneity. Appl Environ. Microbiol 81, 5976–5986 (2015).
-
Xiao, Y., Bowen, C. H., Liu, D. & Zhang, F. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat. Chem. Biol. 12, 339–344 (2016).
-
Bao, Z. et al. New insights into phenotypic heterogeneity for the distinct lipid accumulation of Schizochytrium sp. H016. Biotechnol. Biofuels Bioprod. 15, 33 (2022).
-
Wright, N. R. et al. Emergence of Phenotypically Distinct Subpopulations Is a Factor in Adaptation of Recombinant Saccharomyces cerevisiae under Glucose-Limited Conditions. Appl. Environ. Microbiol. 88, e02307–e02321 (2022).
-
Xu, M., Vallières, C., Finnis, C., Winzer, K. & Avery, S. V. Exploiting phenotypic heterogeneity to improve production of glutathione by yeast. Micro. Cell Fact. 23, 267 (2024).
-
Lv, Y. et al. Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction. Metab. Eng. 54, 109–116 (2019).
-
Rugbjerg, P., Sarup-Lytzen, K., Nagy, M. & Sommer, M. O. A. Synthetic addiction extends the productive life time of engineered Escherichia coli populations. Proc. Natl. Acad. Sci. 115, 2347–2352 (2018).
-
Ali, A. et al. Single-cell metabolomics by mass spectrometry: Advances, challenges, and future applications. TrAC Trends Anal. Chem. 120, 115436 (2019).
-
Liu, Y., Liu, Y. & Wang, M. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering. Front. Microbiol. 8, 2012 (2017).
-
Hossain, G. S., Saini, M., Miyake, R., Ling, H. & Chang, M. W. Genetic Biosensor Design for Natural Product Biosynthesis in Microorganisms. Trends Biotechnol. 38, 797–810 (2020).
-
Qiu, C., Zhai, H. & Hou, J. Biosensors design in yeast and applications in metabolic engineering. FEMS Yeast Res. 19, foz082 (2019).
-
Rogers, J. K., Taylor, N. D. & Church, G. M. Biosensor-based engineering of biosynthetic pathways. Curr. Opin. Biotechnol. 42, 84–91 (2016).
-
Torello Pianale, L., Rugbjerg, P. & Olsson, L. Real-Time Monitoring of the Yeast Intracellular State During Bioprocesses With a Toolbox of Biosensors. Front. Microbiol. 12, 802169 (2022).
-
Newman, J. R. S. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).
-
Silander, O. K. et al. A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli. PLoS Genet 8, e1002443 (2012).
-
Lee, M. E., DeLoache, W. C., Cervantes, B. & Dueber, J. E. A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly. ACS Synth. Biol. 4, 975–986 (2015).
-
Wang, Y.-H. et al. Advances in engineering the production of the natural red pigment lycopene: A systematic review from a biotechnology perspective. J. Adv. Res. 46, 31–47 (2023).
-
Ahmed, A. et al. Recent Advances in Synthetic, Industrial and Biological Applications of Violacein and Its Heterologous Production. J. Microbiol Biotechnol. 31, 1465–1480 (2021).
-
Di Salvo, E. et al. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 15, 1923 (2023).
-
Mahon, M. J. pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein. Adv. Biosci. Biotechnol. 2, 132–137 (2011).
-
Ortega, A. D. et al. A synthetic RNA-based biosensor for fructose-1,6-bisphosphate that reports glycolytic flux. Cell Chem. Biol. 28, 1554–1568.e8 (2021).
-
Airoldi, E. M. et al. Predicting Cellular Growth from Gene Expression Signatures. PLoS Comput Biol. 5, e1000257 (2009).
-
Knudsen, J. D., Carlquist, M. & Gorwa-Grauslund, M. NADH-dependent biosensor in Saccharomyces cerevisiae: principle and validation at the single cell level. AMB Express 4, 81 (2014).
-
Zhang, J. et al. Engineering an NADPH/NADP+ Redox Biosensor in Yeast. ACS Synth. Biol. 5, 1546–1556 (2016).
-
Botman, D., van Heerden, J. H. & Teusink, B. An Improved ATP FRET Sensor For Yeast Shows Heterogeneity During Nutrient Transitions. ACS Sens 5, 814–822 (2020).
-
Nguyen, P. T. M., Ishiwata-Kimata, Y. & Kimata, Y. Monitoring ADP/ATP ratio in yeast cells using the fluorescent-protein reporter PercevalHR. Biosci., Biotechnol., Biochem. 83, 824–828 (2019).
-
Valkonen, M., Mojzita, D., Penttilä, M. & Benčina, M. Noninvasive High-Throughput Single-Cell Analysis of the Intracellular pH of Saccharomyces cerevisiae by Ratiometric Flow Cytometry. Appl. Environ. Microbiol. 79, 7179–7187 (2013).
-
Dechant, R. et al. Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J. 29, 2515–2526 (2010).
-
Lucena, R. M., Dolz-Edo, L., Brul, S., de Morais, M. A. & Smits, G. Extreme Low Cytosolic pH Is a Signal for Cell Survival in Acid Stressed Yeast. Genes 11, 656 (2020).
-
Huberts, D. H. E. W., Niebel, B. & Heinemann, M. A flux-sensing mechanism could regulate the switch between respiration and fermentation. FEMS Yeast Res. 12, 118–128 (2012).
-
Yuan, H.-X., Xiong, Y. & Guan, K.-L. Nutrient Sensing, Metabolism, and Cell Growth Control. Mol. Cell 49, 379–387 (2013).
-
Tantama, M., Martínez-François, J. R., Mongeon, R. & Yellen, G. Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nat. Commun. 4, 2550 (2013).
-
Xiao, W., Wang, R.-S., Handy, D. E. & Loscalzo, J. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. Antioxid. Redox Signal 28, 251–272 (2018).
-
Botman, D., de Groot, D. H., Schmidt, P., Goedhart, J. & Teusink, B. In vivo characterisation of fluorescent proteins in budding yeast. Sci. Rep. 9, 2234 (2019).
-
Ullah, A., Chandrasekaran, G., Brul, S. & Smits, G. J. Yeast adaptation to weak acids prevents futile energy expenditure. Front. Microbiol. 4, 142 (2013).
-
Stratford, M. et al. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae. Int. J. Food Microbiol. 161, 164–171 (2013).
-
Monteiro, F. et al. Measuring glycolytic flux in single yeast cells with an orthogonal synthetic biosensor. Mol. Syst. Biol. 15, e9071 (2019).
-
Ansell, R., Granath, K., Hohmann, S., Thevelein, J. M. & Adler, L. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 16, 2179–2187 (1997).
-
Shaw, W. M., Khalil, A. S. & Ellis, T. A Multiplex MoClo Toolkit for Extensive and Flexible Engineering of Saccharomyces cerevisiae. ACS Synth. Biol. 12, 3393–3405 (2023).
-
Jackson, C. A., Castro, D. M., Saldi, G.-A., Bonneau, R. & Gresham, D. Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments. eLife 9, e51254 (2020).
-
Gobert, A. et al. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile. Front. Microbiol. 8, 2175 (2017).
-
González, A. & Hall, M. N. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 36, 397–408 (2017).
-
Isom, D. G. et al. Coordinated regulation of intracellular pH by two glucose-sensing pathways in yeast. J. Biol. Chem. 293, 2318–2329 (2018).
-
Elsutohy, M. M. et al. Real-time measurement of the intracellular pH of yeast cells during glucose metabolism using ratiometric fluorescent nanosensors. Nanoscale 9, 5904–5911 (2017).
-
Valkonen, M., Mojzita, D., Penttilä, M. & Benčina, M. Noninvasive High-Throughput Single-Cell Analysis of the Intracellular pH of Saccharomyces cerevisiae by Ratiometric Flow Cytometry. Appl. Environ. Microbiol. 79, 7179 (2013).
-
Orij, R., Postmus, J., Ter Beek, A., Brul, S. & Smits, G. J. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology. (Read.) 155, 268–278 (2009).
-
Duncan, J. D., Devillers, H., Camarasa, C., Setati, M. E. & Divol, B. Oxygen alters redox cofactor dynamics and induces metabolic shifts in Saccharomyces cerevisiae during alcoholic fermentation. Food Microbiol. 124, 104624 (2024).
-
Vasdekis, A. E., Silverman, A. M. & Stephanopoulos, G. Origins of Cell-to-Cell Bioprocessing Diversity and Implications of the Extracellular Environment Revealed at the Single-Cell Level. Sci. Rep. 5, 17689 (2015).
-
Hartigan, J. A. & Hartigan, P. M. The Dip Test of Unimodality. Ann. Stat. 13, 70–84 (1985).
-
Davidson, G. S. et al. The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures. MBoC 22, 988–998 (2011).
-
Jacquel, B., Aspert, T., Laporte, D., Sagot, I. & Charvin, G. Monitoring single-cell dynamics of entry into quiescence during an unperturbed life cycle. eLife 10, e73186 (2021).
-
Lama, S. et al. Production of 3-hydroxypropionic acid from acetate using metabolically-engineered and glucose-grown Escherichia coli. Bioresour. Technol. 320, 124362 (2021).
-
Chen, Y. et al. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microb. Cell Factories 15, 113 (2016).
-
Wehrs, M. et al. Production efficiency of the bacterial non-ribosomal peptide indigoidine relies on the respiratory metabolic state in S. cerevisiae. Microb. Cell Factories 17, 193 (2018).
-
Sakihama, Y., Hidese, R., Hasunuma, T. & Kondo, A. Increased flux in acetyl-CoA synthetic pathway and TCA cycle of Kluyveromyces marxianus under respiratory conditions. Sci. Rep. 9, 5319 (2019).
-
Schroeder, L. & Ikui, A. E. Tryptophan confers resistance to SDS-associated cell membrane stress in Saccharomyces cerevisiae. PLoS One 14, e0199484 (2019).
-
Hirasawa, T. et al. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J. Biotechnol. 131, 34–44 (2007).
-
Ren, X. et al. A comprehensive review and comparison of L-tryptophan biosynthesis in Saccharomyces cerevisiae and Escherichia coli. Front. Bioeng. Biotechnol. 11, 1261832 (2023).
-
Marroquin, L. D., Hynes, J., Dykens, J. A., Jamieson, J. D. & Will, Y. Circumventing the Crabtree Effect: Replacing Media Glucose with Galactose Increases Susceptibility of HepG2 Cells to Mitochondrial Toxicants. Toxicol. Sci. 97, 539–547 (2007).
-
Martínez, J. L., Bordel, S., Hong, K.-K. & Nielsen, J. Gcn4p and the Crabtree effect of yeast: drawing the causal model of the Crabtree effect in Saccharomyces cerevisiae and explaining evolutionary trade-offs of adaptation to galactose through systems biology. FEMS Yeast Res. 14, 654–662 (2014).
-
Hewitt, C. J. & Nienow, A. W. The Scale-Up of Microbial Batch and Fed-Batch Fermentation Processes. in Advances in Applied Microbiology vol. 62, 105–135 (Academic Press, 2007).
-
Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).
-
Dietler, N. et al. A convolutional neural network segments yeast microscopy images with high accuracy. Nat. Commun. 11, 5723 (2020).
-
Luzia, L. et al. A fast method to distinguish between fermentative and respiratory metabolisms in single yeast cells. iScience 27, 108767 (2024).
-
Ellis, B. et al. flowCore: Basic structures for flow cytometry data. https://doi.org/10.18129/B9.bioc.flowCore (2024).
-
Maechler, M. diptest: Hartigan’s Dip Test Statistic for Unimodality – Corrected. (2024).
-
Scrucca, L., Fraley, C., Murphy, T. B. & Raftery, A. E. Model-Based Clustering, Classification, and Density Estimation Using Mclust in R. (Chapman and Hall/CRC, New York, 2023). https://doi.org/10.1201/9781003277965.
