Remediation and upcycling of microplastics by algae with wastewater nutrient removal and bioproduction potential

remediation-and-upcycling-of-microplastics-by-algae-with-wastewater-nutrient-removal-and-bioproduction-potential
Remediation and upcycling of microplastics by algae with wastewater nutrient removal and bioproduction potential

References

  1. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

  2. Thompson, R. C. et al. Twenty years of microplastics pollution research-what have we learned? Science 386, eadl2746 (2024).

  3. Dawson, A. L. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).

  4. Alimi, O. S., Budarz, J. F., Hernandez, L. M. & Tufenkji, N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol. 52, 1704–1724 (2018).

    Google Scholar 

  5. Marfella, R. et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N. Engl. J. Med 390, 900–910 (2024).

    Google Scholar 

  6. Nihart, A. J. et al. Bioaccumulation of microplastics in decedent human brains. Nat. Med. 31, 1114–1119 (2025).

  7. Hu, K. S. et al. Microplastics remediation in aqueous systems: Strategies and technologies. Water Res. 198, 117144 (2021).

  8. Bhatt, P., Pathak, V. M., Bagheri, A. R. & Bilal, M. Microplastic contaminants in the aqueous environment, fate, toxicity consequences, and remediation strategies. Environ. Res. 200, 111762 (2021).

  9. Sarcletti, M. et al. The remediation of nano-/microplastics from water. Mater. Today 48, 38–46 (2021).

    Google Scholar 

  10. Yu, Z. et al. Microplastic detection and remediation through efficient interfacial solar evaporation for immaculate water production. Nat. Commun. 15, 6081 (2024).

    Google Scholar 

  11. Reddy, A. S. & Nair, A. T. The fate of microplastics in wastewater treatment plants: An overview of source and remediation technologies. Environ. Technol. Innov. 28, 102815 (2022).

  12. Sun, J., Dai, X. H., Wang, Q. L., van Loosdrecht, M. C. M. & Ni, B. J. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Res. 152, 21–37 (2019).

    Google Scholar 

  13. Zhao, X. et al. Plastic waste upcycling toward a circular economy. Chem. Eng. J. 428, 131928 (2022).

    Google Scholar 

  14. Ma, D. Transforming end-of-life plastics for a better world. Nat. Sustain 6, 1142–1143 (2023).

    Google Scholar 

  15. Dang, B.-T. et al. Current application of algae derivatives for bioplastic production: A review. Bioresour. Technol. 347, 126698 (2022).

    Google Scholar 

  16. Rajpoot, A. S., Choudhary, T., Chelladurai, H., Nath Verma, T. & Shende, V. A comprehensive review on bioplastic production from microalgae. Mater. Today.: Proc. 56, 171–178 (2022).

    Google Scholar 

  17. Cheah, W. Y. et al. Current status and perspectives of algae-based bioplastics: A reviewed potential for sustainability. Algal Res. 71, 103078 (2023).

    Google Scholar 

  18. Gao, D., Li, X. Y. & Liu, H. T. Source, occurrence, migration and potential environmental risk of microplastics in sewage sludge and during sludge amendment to soil. Sci. Total Environ. 742, 140355 (2020).

    Google Scholar 

  19. Casella, C., Sol, D., Laca, A. & Diaz, M. Microplastics in Sewage Sludge: A review. Environ. Sci. Pollut. Res Int 30, 63382–63415 (2023).

    Google Scholar 

  20. Cholewinski, A. et al. A critical review of microplastic degradation and material flow analysis towards a circular economy. Environ. Pollut. 315, 120334 (2022).

    Google Scholar 

  21. de Oliveira, T. T. S. et al. Interaction of Cyanobacteria with Nanometer and Micron Sized Polystyrene Particles in Marine and Fresh Water. Langmuir 36, 3963–3969 (2020).

    Google Scholar 

  22. Cunha, C. et al. Microalgal-based biopolymer for nano- and microplastic removal: a possible biosolution for wastewater treatment. Environ. Pollut. 263, 114385 (2020).

  23. Cunha, C., Faria, M., Nogueira, N., Ferreira, A. & Cordeiro, N. Marine vs freshwater microalgae exopolymers as biosolutions to microplastics pollution. Environ. Pollut. 249, 372–380 (2019).

    Google Scholar 

  24. Liu, S. Y., Leung, M. M. L., Fang, J. K. H. & Chua, S. L. Engineering a microbial ‘trap and release’ mechanism for microplastics removal. Chem. Eng. J. 404, 127079 (2021).

  25. Chan, S. Y., Wong, M. W. T., Kwan, B. T. C., Fang, J. K. H. & Chua, S. L. Microbial-Enzymatic Combinatorial Approach to Capture and Release Microplastics. Environ. Sci. Tech. Lett. 9, 975–982 (2022).

  26. Li, H., Barber, M., Lu, J. & Goel, R. Microbial community successions and their dynamic functions during harmful cyanobacterial blooms in a freshwater lake. Water Res. 185, 116292 (2020).

    Google Scholar 

  27. Long, B. et al. Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity. Nat. Commun. 13, 541 (2022).

  28. Wang, X. et al. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations. Proc. Natl. Acad. Sci. USA 113, 14225–14230 (2016).

    Google Scholar 

  29. Lee, H. et al. The use of a benign fast-growing cyanobacterial species to control microcystin synthesis from Microcystis aeruginosa. Front. Microbiol. ume 15, 2024 (2024).

    Google Scholar 

  30. Al Harraq, A. & Bharti, B. Microplastics through the Lens of Colloid Science. Acs Environ. Au 2, 3–10 (2021).

    Google Scholar 

  31. Wang, H. M. et al. Microplastics removal in the aquatic environment via fungal pelletization. Bioresour. Tech. Rep. 23, 101545 (2023).

  32. Pico, Y., Alfarhan, A. & Barcelo, D. Nano- and microplastic analysis: Focus on their occurrence in freshwater ecosystems and remediation technologies. Trac-Trend Anal. Chem. 113, 409–425 (2019).

    Google Scholar 

  33. Sood A., Renuka N., Prasanna R., Ahluwalia A. S. Cyanobacteria as Potential Options for Wastewater Treatment. In: Phytoremediation: Management of Environmental Contaminants, Volume 2 (eds Ansari A. A., Gill S. S., Gill R., Lanza G. R., Newman L.). Springer International Publishing (2015).

  34. Ahmad, I. Z. The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Lett. Appl. Microbiol. 75, 718–730 (2022).

    Google Scholar 

  35. Tan, C. L., Xu, P. & Tao, F. Carbon-negative synthetic biology: challenges and emerging trends of cyanobacterial technology. Trends Biotechnol. 40, 1488–1502 (2022).

    Google Scholar 

  36. Li, M. et al. Altered Carbon Partitioning Enhances CO2 2 to Terpene Conversion in Cyanobacteria. Biodesign Res. 2022, 9897425 (2022).

  37. Daneshvar, E., Wicker, R. J., Show, P. L. & Bhatnagar, A. Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization-A review. Chem. Eng. J. 427, 130884 (2022).

  38. Wu, D. et al. Size-dependent toxic effects of polystyrene microplastic exposure on Microcystis aeruginosa growth and microcystin production. Sci. Total Environ. 761, 143265 (2021).

  39. Khan, S. et al. Production of sustainable thermoplastic composites from waste nitrogen fertilizer-grown marine filamentous cyanobacterium Geitlerinema sp. J. Environ. Manag. 366, 121931 (2024).

    Google Scholar 

  40. Chen, S. et al. Preparation of cyanobacteria-enhanced poly(vinyl)alcohol-based films with resistance to blue-violet light / red light and water. PLoS One 15, e0228814 (2020).

    Google Scholar 

  41. Kuppan, P., Sudharsanam, A., Venkateswarlu, K. & Megharaj, M. Solar technology‒closed loop synergy facilitates low-carbon circular bioeconomy in microalgal wastewater treatment. npj Clean. Water 6, 43 (2023).

    Google Scholar 

  42. Dutta, S., Neto, F. & Coelho, M. C. Microalgae biofuels: A comparative study on techno-economic analysis & life-cycle assessment. Algal Res. 20, 44–52 (2016).

    Google Scholar 

  43. Rueda, E. et al. Life cycle assessment and economic analysis of bioplastics production from cyanobacteria. Sustain. Mater. Technol. 35, e00579 (2023).

    Google Scholar 

  44. Cao, W. et al. Comparison of Scenedesmus obliquus in CO2 Capture, Biolipid Production and Nutrient Removal. Separations 11, 218 (2024).

    Google Scholar 

  45. Watkins, J. et al. Techno-economic analysis of bioplastic and biofuel production from a high-ash microalgae biofilm cultivated in effluent from a municipal anaerobic digester. Algal Res. 84, 103774 (2024).

    Google Scholar 

  46. Liu, Z. H. et al. Transforming biorefinery designs with ‘Plug-In Processes of Lignin’ to enable economic waste valorization. Nat. Commun. 12, 3912 (2021).

    Google Scholar 

  47. Price, S., Kuzhiumparambil, U., Pernice, M. & Ralph, P. Techno-economic analysis of cyanobacterial PHB bioplastic production. J. Environ. Chem. Eng. 10, 107502 (2022).

    Google Scholar 

  48. Panuschka, S., Drosg, B., Ellersdorfer, M., Meixner, K. & Fritz, I. Photoautotrophic production of poly-hydroxybutyrate – First detailed cost estimations. Algal Res. 41, 101558 (2019).

    Google Scholar 

  49. Zhang, L. et al. Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO2. Biotechnol. Biofuels 13, 82 (2020).

    Google Scholar 

  50. Yu, J. et al. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Sci. Rep.-Uk 5, 8132 (2015).

    Google Scholar 

  51. Roh, H. et al. Improved CO2-derived polyhydroxybutyrate (PHB) production by engineering fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 for potential utilization of flue gas. Bioresour. Technol. 327, 124789 (2021).

    Google Scholar 

  52. Iyare, P. U., Ouki, S. K. & Bond, T. Microplastics removal in wastewater treatment plants: a critical review. Environ. Sci.: Water Res. Technol. 6, 2664–2675 (2020).

    Google Scholar 

  53. Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A. & Gutierrez, T. Integrating micro-algae into wastewater treatment: A review. Sci. Total Environ. 752, 142168 (2021).

    Google Scholar 

  54. Wang, T. et al. Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport. Sci. Total Environ. 748, 142427 (2020).

    Google Scholar 

  55. Li, L. et al. Role of microalgae-bacterial consortium in wastewater treatment: A review. J. Environ. Manag. 360, 121226 (2024).

    Google Scholar 

  56. Yu, J. J. et al. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Sci. Rep.-UK 5, 8132 (2015).

  57. Ungerer, J., Wendt, K. E., Hendry, J. I., Maranas, C. D. & Pakrasi, H. B. Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973. Proc. Natl. Acad. Sci. USA 115, E11761–E11770 (2018).

    Google Scholar 

  58. Wang, H. et al. Microplastics removal in the aquatic environment via fungal pelletization. Bioresour. Tech. Rep. 23, 101545 (2023).

    Google Scholar 

  59. Shen, M. et al. Efficient removal of microplastics from wastewater by an electrocoagulation process. Chem. Eng. J. 428, 131161 (2022).

    Google Scholar 

  60. Chu, C. H., Lin, Y. X., Liu, C. K. & Lai, M. C. Development of Innovative Online Modularized Device for Turbidity Monitoring. Sens. (Basel) 23, 3073 (2023).

    Google Scholar 

  61. Zeng, Y., Himmel, M. E. & Ding S-YJBfB. Visualizing chemical functionality in plant cell walls. Biotechnol. biofuels 10, 263 (2017).

    Google Scholar 

  62. Badulescu R., Vivod V., Jausovec D., Voncina B. Treatment of Cotton Fabrics with Ethyl Cellulose Microcapsules. In: Medical and Healthcare Textiles (eds Anand S. C., Kennedy J. F., Miraftab M., Rajendran S.). Woodhead Publishing (2010).

  63. Claudino, M., Jonsson, M. & Johansson, M. Utilizing thiol–ene coupling kinetics in the design of renewable thermoset resins based on d-limonene and polyfunctional thiols. RSC Adv. 4, 10317–10329 (2014).

    Google Scholar 

  64. Lu, F.-K. et al. Multicolor stimulated Raman scattering (SRS) microscopy. Mol. Phys. 110, 1927–1932 (2012).

    Google Scholar 

  65. Nandakumar, P., Kovalev, A. & Volkmer, A. Vibrational imaging based on stimulated Raman scattering microscopy. N. J. Phys. 11, 033026 (2009).

    Google Scholar 

Download references