Biomimetic liquid metal synapse

biomimetic-liquid-metal-synapse
Biomimetic liquid metal synapse

References

  1. Choquet, D. & Triller, A. The dynamic synapse. Neuron 80, 691–703 (2013).

    Google Scholar 

  2. Magee, J. C. & Grienberger, C. Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 43, 95–117 (2020).

    Google Scholar 

  3. Pereda, A. E. Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250–263 (2014).

    Google Scholar 

  4. Branco, T. & Staras, K. The probability of neurotransmitter release: variability and feedback control at single synapses. Nat. Rev. Neurosci. 10, 373–383 (2009).

    Google Scholar 

  5. Stevens, C. F. Neurotransmitter release at central synapses. Neuron 40, 381–388 (2003).

    Google Scholar 

  6. Dubnau, J., Chiang, A. S. & Tully, T. Neural substrates of memory: from synapse to system. J. Neurobiol. 54, 238–253 (2003).

    Google Scholar 

  7. Neves, G., Cooke, S. F. & Bliss, T. V. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat. Rev. Neurosci. 9, 65–75 (2008).

    Google Scholar 

  8. Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. Neuron 68, 843–856 (2010).

    Google Scholar 

  9. Cohen-Cory, S. The developing synapse: construction and modulation of synaptic structures and circuits. Science 298, 770–776 (2002).

    Google Scholar 

  10. Postila, P. A. & Rog, T. A perspective: active role of lipids in neurotransmitter dynamics. Mol. Neurobiol. 57, 910–925 (2020).

    Google Scholar 

  11. Fon, E. A. & Edwards, R. H. Molecular mechanisms of neurotransmitter release. Muscle Nerve 24, 581–601 (2001).

    Google Scholar 

  12. Wang, B. & Dudko, O. K. A theory of synaptic transmission. Elife 10, 73585 (2021).

    Google Scholar 

  13. Allen, N. J. & Barres, B. A. Signaling between glia and neurons: focus on synaptic plasticity. Curr. Opin. Neurobiol. 15, 542–548 (2005).

    Google Scholar 

  14. Li, J. et al. Polymeric memristor based artificial synapses with ultra-wide operating temperature. Adv. Mater. 35, e2209728 (2023).

    Google Scholar 

  15. Guo, J. et al. A diffusive artificial synapse based on charged metal nanoparticles. Nano Lett. 24, 1951–1958 (2024).

    Google Scholar 

  16. Song, S. et al. Artificial optoelectronic synapse based on spatiotemporal irradiation to source-sharing circuitry of synaptic phototransistors. InfoMat 6, e12479 (2023).

    Google Scholar 

  17. Hu, L., Yuan, B. & Liu, J. Liquid metal amoeba with spontaneous pseudopodia formation and motion capability. Sci. Rep. 7, 7256 (2017).

    Google Scholar 

  18. Tang, J., Zhao, X., Li, J., Zhou, Y. & Liu, J. Liquid metal phagocytosis: intermetallic wetting induced particle internalization. Adv. Sci. 4, 1700024 (2017).

    Google Scholar 

  19. Gao, J. et al. Biotissue-like rhythmic hydrous liquid-metal agglomerates. Matter 6, 2870–2885 (2023).

    Google Scholar 

  20. Ma, Y. et al. Chemotaxic biomimetic liquid metallic leukocytes. Matter 8, 101991 (2025).

    Google Scholar 

  21. Hao, Y., Gao, J., Lv, Y. & Liu, J. Low melting point alloys enabled stiffness tunable advanced materials. Adv. Funct. Mater 32, 2201942 (2022).

    Google Scholar 

  22. Zheng, Y., Zhang, Q. & Liu, J. Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv. 3, 112117 (2013).

    Google Scholar 

  23. Su, J. et al. Multilayer flexible high-density liquid metal coils based on infusion. eScience, 100499 (2025).

  24. Zhang, X. et al. Liquid metal neuro-electrical interface. Soft Sci. 4, 23 (2024).

    Google Scholar 

  25. Liu, F., Yu, Y., Yi, L. & Liu, J. Liquid metal as reconnection agent for peripheral nerve injury. Sci. Bull. 61, 939–947 (2016).

    Google Scholar 

  26. Zhang J. S. L., Jin C., Liu J. Liquid metal as connecting or functional recovery channel for the transected sciatic nerve. arXiv. https://arxiv.org/abs/1404.5931 (2014).

  27. Yuan, R. et al. Liquid metal memory. Adv. Mater. 36, e2309182 (2024).

    Google Scholar 

  28. Sheng, L., Zhang, J. & Liu, J. Diverse transformations of liquid metals between different morphologies. Adv. Mater. 26, 6036–6042 (2014).

    Google Scholar 

  29. Wang, M. F., Jin, M. J., Jin, X. J. & Zuo, S. G. Modeling of movement of liquid metal droplets driven by an electric field. Phys. Chem. Chem. Phys. 19, 18505–18513 (2017).

    Google Scholar 

  30. Li, N. et al. Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses. Nano Res. 15, 5418–5424 (2022).

    Google Scholar 

  31. Maren, S. Synaptic mechanisms of associative memory in the amygdala. Neuron 47, 783–786 (2005).

    Google Scholar 

  32. Li, X. et al. High-resolution liquid metal–based stretchable electronics enabled by colloidal self-assembly and microtransfer printing. Sci. Adv. 11, eadw3044 (2025).

    Google Scholar 

  33. Tang, S.-Y. et al. Phase separation in liquid metal nanoparticles. Matter 1, 192–204 (2019).

    Google Scholar 

  34. Wu, K. et al. Mechanochemistry-mediated colloidal liquid metals for electronic device cooling at kilowatt levels. Nat. Nanotechnol. 20, 104–111 (2024).

    Google Scholar 

  35. Peng, Y., Liu, H., Xin, Y. & Zhang, J. Rheological conductor from liquid metal-polymer composites. Matter 4, 3001–3014 (2021).

    Google Scholar 

  36. Wu, J. et al. Mechanical sintering-induced conductive flexible self-healing eGaInSn@PDA NDs/TPU composite based on structural design to against liquid metal leakage. Chem. Eng. J. 458, 141400 (2023).

    Google Scholar 

  37. Cao, L. et al. Ferromagnetic liquid metal putty-like material with transformed shape and reconfigurable polarity. Adv. Mater. 32, e2000827 (2020).

    Google Scholar 

  38. Gao, X., Fan, X. & Zhang, J. Tunable plasmonic gallium nano liquid metal from facile and controllable synthesis. Mater. Horiz. 8, 3315–3323 (2021).

    Google Scholar 

  39. Li, W. et al. Lignocellulose-mediated functionalization of liquid metals toward the frontiers of multifunctional materials. Adv. Mater. 37, e2415761 (2025).

    Google Scholar 

Download references