References
-
Tella, S. H. & Gallagher, J. C. Prevention and treatment of postmenopausal osteoporosis. J. Steroid Biochem. Mol. Biol. 142, 155–170 (2014).
-
Kanis, J. A. et al. A new approach to the development of assessment guidelines for osteoporosis. Osteoporos. Int. J. Establ Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA. 13, 527–536 (2002).
-
Temmerman, A., Rasmusson, L., Kübler, A., Thor, A. & Quirynen, M. An open, prospective, non-randomized, controlled, multicentre study to evaluate the clinical outcome of implant treatment in women over 60 years of age with osteoporosis/osteopenia: 1-year results. Clin. Oral Implants Res. 28, 95–102 (2017).
-
Eastell, R. Management of osteoporosis due to ovarian failure. Med. Pediatr. Oncol. 41, 222–227 (2003).
-
Armas, L. A. G. & Recker, R. R. Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol. Metab. Clin. North. Am. 41, 475–486 (2012).
-
Lemos, C. A. A. et al. Do dental implants placed in patients with osteoporosis have higher risks of failure and marginal bone loss compared to those in healthy patients? A systematic review with meta-analysis. Clin. Oral Investig. 27, 2483–2493 (2023).
-
Giro, G. et al. Impact of osteoporosis in dental implants: A systematic review. World J. Orthop. 6, 311–315 (2015).
-
Merheb, J., Vercruyssen, M., Coucke, W. & Quirynen, M. Relationship of implant stability and bone density derived from computerized tomography images. Clin. Implant Dent. Relat. Res. 20, 50–57 (2018).
-
Song, S., Guo, Y., Yang, Y. & Fu D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol. Ther. 237, 108168 (2022).
-
McClung, M. R. Romosozumab for the treatment of osteoporosis. Osteoporos. Sarcopenia. 4, 11–15 (2018).
-
Sibai, T., Morgan, E. F. & Einhorn, T. A. Anabolic agents and bone quality. Clin. Orthop. 469, 2215–2224 (2011).
-
Anil, S., Preethanath, R. S., AlMoharib, H. S., Kamath, K. P. & Anand, P. S. Impact of osteoporosis and its treatment on oral health. Am. J. Med. Sci. 346, 396–401 (2013).
-
Ruggiero, S. L. et al. American association of oral and maxillofacial surgeons’ position paper on Medication-Related osteonecrosis of the Jaws-2022 update. J. Oral Maxillofac. Surg. Off J. Am. Assoc. Oral Maxillofac. Surg. 80, 920–943 (2022).
-
Li, Z. et al. Cell death regulation: A new way for natural products to treat osteoporosis. Pharmacol. Res. 187, 106635 (2023).
-
Martiniakova, M., Babikova, M. & Omelka, R. Pharmacological agents and natural compounds: available treatments for osteoporosis. J. Physiol. Pharmacol. Off J. Pol. Physiol. Soc. https://doi.org/10.26402/jpp.2020.3.01 (2020).
-
Choi, C. et al. Effect of rubus Coreanus extracts on diabetic osteoporosis by simultaneous regulation of osteoblasts and osteoclasts. Menopause N Y N. 19, 1043–1051 (2012).
-
Hong, S. et al. Suppressive effects of Geoje raspberry (Rubus Tozawae Nakai ex J.Y. Yang) on Post-Menopausal osteoporosis via its osteogenic activity on osteoblast differentiation. Nutrients 16, 3856 (2024).
-
Meng, Q., Manghwar, H. & Hu, W. Study on supergenus rubus L.: Edible, Medicinal, and phylogenetic characterization. Plants 11, 1211 (2022).
-
Lee, M. Y. et al. Metabolite profiling reveals the effect of dietary rubus Coreanus vinegar on Ovariectomy-Induced osteoporosis in a rat model. Mol. Basel Switz. 21, 149 (2016).
-
Jung Koo, H. et al. Effect of the combinatory mixture of rubus Coreanus Miquel and astragalus Membranaceus bunge extracts on ovariectomy-induced osteoporosis in mice and anti-RANK signaling effect. J. Ethnopharmacol. 151, 951–959 (2014).
-
Lee, K. H. & Choi, E. M. Rubus Coreanus Miq. Extract promotes osteoblast differentiation and inhibits bone-resorbing mediators in MC3T3-E1 cells. Am. J. Chin. Med. 34, 643–654 (2006).
-
Do, S. H. et al. Bone-protecting effect of rubus Coreanus by dual regulation of osteoblasts and osteoclasts. Menopause N Y N. 15, 676–683 (2008).
-
Valencia-Llano, C. H., Solano, M. A. & Grande-Tovar, C. D. Nanocomposites of Chitosan/Graphene Oxide/Titanium dioxide Nanoparticles/Blackberry waste extract as potential bone substitutes. Polymers 13, 3877 (2021).
-
Kaume, L., Howard, L. R. & Devareddy, L. The blackberry fruit: a review on its composition and chemistry, metabolism and bioavailability, and health benefits. J. Agric. Food Chem. 60, 5716–5727 (2012).
-
Srivichit, B., Thonusin, C., Chattipakorn, N. & Chattipakorn, S. C. Impacts of bisphosphonates on the bone and its surrounding tissues: mechanistic insights into medication-related osteonecrosis of the jaw. Arch. Toxicol. 96, 1227–1255 (2022).
-
Duarte, P. M., César Neto, J. B., Gonçalves, P. F. & Sallum, E. A. Nociti, júnior F. H. Estrogen deficiency affects bone healing around titanium implants: a histometric study in rats. Implant Dent. 12, 340–346 (2003).
-
Tsao, Y. T. et al. Osteocalcin mediates biomineralization during osteogenic maturation in human mesenchymal stromal cells. Int. J. Mol. Sci. 18, 159 (2017).
-
Lamp, E. C. & Drexler, H. G. Biology of tartrate-resistant acid phosphatase. Leuk. Lymphoma. 39, 477–484 (2000).
-
Shah, F. A., Johansson, B. R., Thomsen, P. & Palmquist, A. Ultrastructural evaluation of shrinkage artefacts induced by fixatives and embedding resins on osteocyte processes and pericellular space dimensions. J. Biomed. Mater. Res. A. 103, 1565–1576 (2015).
-
Grandfield, K., Vuong, V. & Schwarcz, H. P. Ultrastructure of bone: hierarchical features from nanometer to micrometer scale revealed in focused ion beam sections in the TEM. Calcif Tissue Int. 103, 606–616 (2018).
-
Schwarcz, H. P., Abueidda, D. & Jasiuk, I. The Ultrastructure of Bone and Its Relevance to Mechanical Properties. Front Phys https://doi.org/10.3389/fphy.2017.00039 (2017).
-
Okada, H. et al. Ultrastructure of cement lines. J. Hard Tissue Biol. 22, 445–450 (2013).
-
Göttlicher, M. et al. Functionalization of Ti-40Nb implant material with strontium by reactive sputtering. Biomater. Res. 21, 18 (2017).
-
Trino, L. D. et al. Titanium surface Bio-functionalization using osteogenic peptides: surface Chemistry, Biocompatibility, corrosion and tribocorrosion aspects. J. Mech. Behav. Biomed. Mater. 81, 26–38 (2018).
-
Monteiro, N. G. et al. Rubus Coreanus enhances Peri-Implant bone healing and biomineralization in ovariectomized and healthy rats. Biology 14, 139 (2025).
-
International Organization for Standardization. ISO 10993-5: Biological Evaluation of Medical Devices – Part 5: Tests for in Vitro Cytotoxicity. (Geneva, 2009).
-
Song, Y., Ju, Y., Song, G. & Morita, Y. In vitro proliferation and osteogenic differentiation of mesenchymal stem cells on nanoporous alumina. Int. J. Nanomed. 8, 2745–2756 (2013).
-
Li, Z., Müller, R. & Ruffoni, D. Bone remodeling and mechanobiology around implants: insights from small animal imaging. J. Orthop. Res. Off Publ Orthop. Res. Soc. 36, 584–593 (2018).
-
Fiorin, L. G. et al. Tamoxifen improves homeostasis in the peri-implant bone remodeling of osseointegrated titanium implants. J. Periodontal Res. 57, 880–890 (2022).
-
Gomes-Ferreira, P. H. S. et al. Teriparatide improves microarchitectural characteristics of peri-implant bone in orchiectomized rats. Osteoporos. Int. J. Establ Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA. 31, 1807–1815 (2020).
-
Duarte, N. D. et al. Sonification of deproteinized bovine bone functionalized with genistein enhances bone repair in Peri-Implant bone defects in ovariectomized rats. J. Funct. Biomater. 15, 328 (2024).
-
Micheletti, C. et al. Mesoscale characterization of osseointegration around an additively manufactured genistein-coated implant. Sci. Rep. 14, 15339 (2024).
-
Gomes-Ferreira, P. H. S. et al. Evaluation of vitamin D isolated or associated with teriparatide in Peri-Implant bone repair in tibia of orchiectomized rats. Biology 12, 228 (2023).
-
Fernandes, E. et al. Strontium-containing mineralized phospholipid coatings improve osseointegration in osteoporotic rats. J. Biomed. Mater. Res. A. 113, e37782 (2025).
-
Freire, A. R. et al. Histometric analysis of bone repair in bone-implant interface using a polylactic/polyglycolic acid copolymer associated with implants in rabbit tibia. J. Oral Implantol. 38 (Spec No), 449–457 (2012).
-
Glösel, B., Kuchler, U., Watzek, G. & Gruber, R. Review of dental implant rat research models simulating osteoporosis or diabetes. Int. J. Oral Maxillofac. Implants. 25, 516–524 (2010).
-
Alfaiate, D. et al. Surgical bone implantation technique for rat tibia models of diabetes and osteoporosis. J. Vis. Exp. JoVE. https://doi.org/10.3791/66591 (2024).
-
Galvao, J. et al. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. Off Publ Fed. Am. Soc. Exp. Biol. 28, 1317–1330 (2014).
-
Paludetto, L. V. et al. Smart delivery of biomolecules interfering with Peri-Implant repair in osteoporotic rats. Int. J. Mol. Sci. 25, 8963 (2024).
-
Park, J. W. et al. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium. Acta Biomater. 6, 2843–2851 (2010).
-
Parent, M. et al. PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release. J. Control Release Off J. Control Release Soc. 172, 292–304 (2013).
-
Hernandez-Montelongo, J. et al. Electrostatic immobilization of antimicrobial peptides on polyethylenimine and their antibacterial effect against Staphylococcus epidermidis. Colloids Surf. B Biointerfaces. 164, 370–378 (2018).
-
Rosa, M. L. et al. Chronic ethanol intake inhibits in vitro osteogenesis induced by osteoblasts differentiated from stem cells. J. Appl. Toxicol. JAT. 28, 205–211 (2008).
-
Health, C. D. and R. Use of International Standard ISO 10993-1. Biological evaluation of medical devices – Part 1: Evaluation and testing within a risk management process. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-international-standard-iso-10993-1-biological-evaluation-medical-devices-part-1-evaluation-and (2023).
-
de Andrade, D. P. et al. Titanium–35niobium alloy as a potential material for biomedical implants: in vitro study. Mater. Sci. Eng. C. 56, 538–544 (2015).
-
do Prado, R. F. et al. Porous titanium and Ti-35Nb alloy: effects on gene expression of osteoblastic cells derived from human alveolar bone. J. Mater. Sci. Mater. Med. 26, 259 (2015).
-
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).
-
Percie du Sert. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMJ Open. Sci. 4, e100115 (2020).
-
Lagari, V. S. & Levis, S. Phytoestrogens for menopausal bone loss and climacteric symptoms. J. Steroid Biochem. Mol. Biol. 139, 294–301 (2014).
-
The oestrous cycle in the rat and its associated phenomena – Digital. Collections – National Library of Medicine. https://collections.nlm.nih.gov/catalog/nlm:nlmuid-06120800R-bk (1922).
-
Ramalho-Ferreira, G., Faverani, L. P., Prado, F. B., Garcia, I. R. & Okamoto, R. Raloxifene enhances peri-implant bone healing in osteoporotic rats. Int. J. Oral Maxillofac. Surg. 44, 798–805 (2015).
-
Luvizuto, E. R. et al. Osteocalcin Immunolabeling during the alveolar healing process in ovariectomized rats treated with Estrogen or raloxifene. Bone 46, 1021–1029 (2010).
-
dos Santos, P. L. et al. Guided implant surgery: what is the influence of this new technique on bone cell viability? J. Oral Maxillofac. Surg. 71, 505–512 (2013).
-
Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Min. Res. Off J. Am. Soc. Bone Min. Res. 25, 1468–1486 (2010).
-
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9, 676–682 (2012).
-
Gomes, F. V. et al. Low-level laser therapy improves peri-implant bone formation: resonance frequency, electron microscopy, and stereology findings in a rabbit model. Int. J. Oral Maxillofac. Surg. 44, 245–251 (2015).
-
Jarmar, T. et al. Technique for Preparation and characterization in cross-section of oral titanium implant surfaces using focused ion beam and transmission electron microscopy. J. Biomed. Mater. Res. A. 87, 1003–1009 (2008).
-
Thorfve, A., Palmquist, A. & Grandfield, K. Three-dimensional analytical techniques for evaluation of osseointegrated titanium implants. Mater. Sci. Technol. 31, 174–179 (2015).
