References
-
Tell, G. & Gustincich, S. Redox state, oxidative stress, and molecular mechanisms of protective and toxic effects of bilirubin on cells. Curr. Pharm. Des. 15, 2908–2914 (2009).
-
Du, L. et al. Neonatal hyperbilirubinemia management: Clinical assessment of bilirubin production. Semin. Perinatol. 45, 151351 (2021).
-
Hinds, T. D. Jr. & Stec, D. E. Bilirubin safeguards cardiorenal and metabolic diseases: a protective role in health. Curr. Hypertens. Rep. 21, 87 (2019).
-
Ziberna, L., Martelanc, M., Franko, M. & Passamonti, S. Bilirubin is an endogenous antioxidant in human vascular endothelial cells. Sci. Rep. 6, 29240 (2016).
-
Jayanti, S., Vitek, L., Tiribelli, C. & Gazzin, S. The role of bilirubin and the other “yellow players” in neurodegenerative diseases. Antioxidants 9, 900 (2020).
-
Khurana, I. et al. Can bilirubin nanomedicine become a hope for the management of COVID-19? Med. Hypotheses 149, 110534 (2021).
-
Yu, Z. J. et al. Calculus bovis: A review of the traditional usages, origin, chemistry, pharmacological activities and toxicology. J. Ethnopharmacol. 254, 112649 (2020).
-
Wang, D. Q. H. & Carey, M. C. Therapeutic uses of animal biles in traditional Chinese medicine: An ethnopharmacological, biophysical chemical and medicinal review. World J. Gastroenterol. 20, 9952–9975 (2014).
-
Zhang, J. et al. Recent advances in microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway. Biotechnol. Adv. 55, 107904 (2022).
-
Ko, Y. J. et al. Bioproduction of porphyrins, phycobilins, and their proteins using microbial cell factories: engineering, metabolic regulations, challenges, and perspectives. Crit. Rev. Biotechnol. 44, 373–387 (2023).
-
Waza, A. A., Hamid, Z., Ali, S., Bhat, S. A. & Bhat, M. A. A review on heme oxygenase-1 induction: is it a necessary evil. Inflamm. Res. 67, 579–588 (2018).
-
Pena, A. C. & Pamplona, A. Heme oxygenase-1, carbon monoxide, and malaria-The interplay of chemistry and biology. Coord. Chem. Rev. 453, 214285 (2022).
-
Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 114, 3919–3962 (2014).
-
Salim, M., Brown-Kipphut, B. A. & Maines, M. D. Human biliverdin reductase is autophosphorylated, and phosphorylation is required for bilirubin formation. J. Biol. Chem. 276, 10929–10934 (2001).
-
Florczyk, U. M., Jozkowicz, A. & Dulak, J. Biliverdin reductase: new features of an old enzyme and its potential therapeutic significance. Pharmacol. Rep. 60, 38–48 (2008).
-
Matsui, T., Iwasaki, M., Sugiyama, R., Unno, M. & Ikeda-Saito, M. Dioxygen activation for the self-degradation of heme: reaction mechanism and regulation of heme oxygenase. Inorg. Chem. 49, 3602–3609 (2010).
-
Sato, H. et al. Crystal structure of rat haem oxygenase-1 in complex with ferrous verdohaem: presence of a hydrogen-bond network on the distal side. Biochem. J. 419, 339–345 (2009).
-
Hamdane, D. et al. Structure and function of an NADPH-cytochrome P450 oxidoreductase in an open conformation capable of reducing cytochrome P450. J. Biol. Chem. 284, 11374–11384 (2009).
-
Sugishima, M., Wada, K. & Fukuyama, K. Recent advances in the understanding of the reaction chemistries of the heme catabolizing enzymes HO and BVR Based on high resolution protein structures. Curr. Med. Chem. 27, 3499–3518 (2020).
-
Tohda, R. et al. Crystal structure of higher plant heme oxygenase-1 and its mechanism of interaction with ferredoxin. J. Biol. Chem. 296, 100217 (2021).
-
Wang, J. et al. Enzymological and structural characterization of Arabidopsis thaliana heme oxygenase-1. FEBS Open Bio 12, 1677–1687 (2022).
-
Castrignano, S. et al. Modulation of the interaction between human P450 3A4 and B. megaterium reductase via engineered loops. Biochim. Biophys. Acta Proteins Proteom. 1866, 116–125 (2018).
-
Paukovich, N. et al. Biliverdin reductase B dynamics are coupled to coenzyme binding. J. Mol. Biol. 430, 3234–3250 (2018).
-
Takao, H. et al. A substrate-bound structure of cyanobacterial biliverdin reductase identifies stacked substrates as critical for activity. Nat. Commun. 8, 14397 (2017).
-
Ishchuk, O. P. et al. Genome-scale modeling drives 70-fold improvement of intracellular heme production in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 119, e2108245119 (2022).
-
Choi, K. R., Yu, H. E., Lee, H. & Lee, S. Y. Improved production of heme using metabolically engineered Escherichia coli. Biotechnol. Bioeng. 119, 3178–3193 (2022).
-
Chen, H. et al. High-yield porphyrin production through metabolic engineering and biocatalysis. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02267-3 (2024).
-
Yang, S. et al. Recent advances in microbial synthesis of free heme. Appl. Microbiol. Biotechnol. 108, 17–27 (2024).
-
Liu, Z., Xiong, P., Guo, N. & Chen, H. Efficient biosynthesis of bilirubin by overexpressing heme oxygenase, biliverdin reductase and 5-aminolevulinic acid dehydratase in Escherichia coli. Mol. Catal. 571, 114714 (2025).
-
Chen, H., Xiong, P., Guo, N. & Liu, Z. Metabolic engineering of Escherichia coli for production of a bioactive metabolite of bilirubin. Int. J. Mol. Sci. 25 https://doi.org/10.3390/ijms25179741 (2024).
-
Mei, J. et al. Production of biliverdin by biotransformation of exogenous heme using recombinant Pichia pastoris cells. Bioresour. Bioprocess. 11, 19 (2024).
-
Yan, S. et al. Efficient production of biliverdin through whole-cell biocatalysis using recombinant Escherichia coli. Chin. J. Biotechnol. 38, 2581–2593 (2022).
-
Chen, D., Brown, J. D., Kawasaki, Y., Bommer, J. & Takemoto, J. Y. Scalable production of biliverdin IX alpha by Escherichia coli. BMC Biotechnol. 12, 89 (2012).
-
Mei, J. et al. Production of bilirubin by biotransformation of biliverdin using recombinant Escherichia coli cells. Bioprocess. Biosyst. Eng. 45, 563–571 (2022).
-
Kepp, K. P. Heme: From quantum spin crossover to oxygen manager of life. Coord. Chem. Rev. 344, 363–374 (2017).
-
Szterenberg, L., Latos-Grażyński, L. & Wojaczyński, J. Metallobiliverdin radicals—DFT studies. ChemPhysChem 4, 691–698 (2003).
-
Dimitrijević, M. S. et al. Biliverdin–copper complex at physiological pH. Dalton Trans. 48, 6061–6070 (2019).
-
Martínez, A., López-Rull, I. & Fargallo, J. A. To prevent oxidative stress, what about protoporphyrin IX, biliverdin, and bilirubin? Antioxidants 12, 1662 (2023).
-
Bozic, B. et al. Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine. Chem. Biol. Interact. 278, 129–134 (2017).
-
Liu, S., Xia, S., Yue, D., Sun, H. & Hirao, H. The bonding nature of Fe–CO complexes in heme proteins. Inorg. Chem. 61, 17494–17504 (2022).
-
Medina, M. V., Sapochnik, D., Garcia Sola, M. & Coso, O. Regulation of the expression of heme oxygenase-1: Signal transduction, gene promoter activation, and beyond. Antioxid. Redox Signal. 32, 1033–1044 (2020).
-
Uchida, T., Sekine, Y., Matsui, T., Ikeda-Saito, M. & Ishimori, K. A heme degradation enzyme, HutZ, from Vibrio cholerae. Chem. Commun. 48, 6741–6743 (2012).
-
Sugishima, M. et al. Structural basis for the electron transfer from an open form of NADPH-cytochrome P450 oxidoreductase to heme oxygenase. Proc. Natl. Acad. Sci. USA 111, 2524–2529 (2014).
-
Duff, M. R. et al. Structure, dynamics and function of the evolutionarily changing biliverdin reductase B family. J. Biochem. 168, 191–202 (2020).
-
O’Brien, L., Hosick, P. A., John, K., Stec, D. E. & Hinds, T. D. Jr. Biliverdin reductase isozymes in metabolism. Trends Endocrinol. Metab. 26, 212–220 (2015).
-
Ahmed, F. H. et al. Rv2074 is a novel F420H2-dependent biliverdin reductase in Mycobacterium tuberculosis. Protein Sci. 25, 1692–1709 (2016).
-
Ryter, S. W. Heme oxygenase-1: An anti-inflammatory effector in cardiovascular, lung, and related metabolic disorders. Antioxidants 11, 555 (2022).
-
Stanojevic, J. S., Zvezdanovic, J. B. & Markovic, D. Z. Bilirubin degradation in methanol induced by continuous UV-B irradiation: a UHPLC-ESI-MS study. Pharmazie 70, 225–230 (2015).
-
Ritter, M. et al. Isolation and identification of intermediates of the oxidative bilirubin degradation. Org. Lett. 18, 4432–4435 (2016).
-
Radoń, M. Predicting spin states of iron porphyrins with DFT methods including crystal packing effects and thermodynamic corrections. Phys. Chem. Chem. Phys. 26, 18182–18195 (2024).
-
Chung, L. W., Li, X., Sugimoto, H., Shiro, Y. & Morokuma, K. Density functional theory study on a missing piece in understanding of heme chemistry: The reaction mechanism for indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. J. Am. Chem. Soc. 130, 12299–12309 (2008).
-
Zazzeron, L., Franco, W. & Anderson, R. Carbon monoxide poisoning and phototherapy. Nitric Oxide-Biol. Chem. 146, 31–36 (2024).
-
Sugishima, M. et al. Crystal structures of ferrous and CO-, CN–, and NO-bound forms of rat heme oxygenase-1 (HO-1) in complex with heme: Structural implications for discrimination between CO and O2 in HO-1. Biochemistry 42, 9898–9905 (2003).
-
Kim, S. M. et al. O2-tolerant CO dehydrogenase via tunnel redesign for the removal of CO from industrial flue gas. Nat. Catal. 5, 807–817 (2022).
-
Cheng, F. et al. Switching the cofactor preference of formate dehydrogenase to develop an NADPH-dependent biocatalytic system for synthesizing chiral amino acids. J. Agric. Food Chem. 71, 9009–9019 (2023).
-
Jurich, C., Shao, Q. Z., Ran, X. C. & Yang, Z. J. Physics-based modeling in the new era of enzyme engineering. Nat. Comput. Sci. 5, 279–291 (2025).
-
Yuan, Z. N., Cruz, L. K. D., Yang, X. X. & Wang, B. H. Carbon monoxide signaling: examining its engagement with various molecular targets in the context of binding affinity, concentration, and biologic response. s. Pharmacol. Rev. 74, 823–873 (2022).
-
Kaur, J., Kumar, A. & Kaur, J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int. J. Biol. Macromol. 106, 803–822 (2018).
-
Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).
-
Xie, J. et al. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 51, W587–W592 (2023).
-
Ruan, Y. Q., Zhang, R. Z. & Xu, Y. Directed evolution of maltogenic amylase from Bacillus licheniformis R-53: Enhancing activity and thermostability improves bread quality and extends shelf life. Food Chem. 381, 132222 (2022).
-
Xi, Z. W. et al. Deciphering the key loop: enhancing l-threonine transaldolase’s catalytic potential. ACS Catal. 14, 10462–10474 (2024).
-
Gaussian 09, Revision D.01Frisch, M. J. et al., Gaussian, Inc., Wallingford CT, (2013).
-
Lu T., Molclus program, version 1.12, http://www.keinsci.com/research/molclus.html.
-
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
-
Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
