References
-
Yadav, G. & Meena, M. Bioprospecting of endophytes in medicinal plants of Thar desert: an attractive resource for biopharmaceuticals. Biotechnol. Rep. 30, e00629 (2021).
-
Guzmán-Trampe, S. et al. Evaluation of the potential bioactivity of an endophytic bacteria isolated from Magnolia dealbata Zucc. Int. J. Curr. Microbiol. App. Sci. 4, 515–525 (2015).
-
Patil, R. H., Patil, M. P. & Maheshwari, V. L. Bioactive secondary metabolites from endophytic fungi: a review of biotechnological production and their potential applications. Stud. Nat. Prod. Chem. 49, 189–205 (2016).
-
Yadav, G. & Meena, M. Seasonal dynamics and enzyme profiles of diverse endophytic fungi in Sterculia urens Roxb.: insights into host-associated trends. World J. Microbiol. Biotechnol. 41, 128 (2025).
-
Masi, M., Nocera, P., Reveglia, P., Cimmino, A. & Evidente, A. Fungal metabolites antagonists towards plant pests and human pathogens: structure-activity relationship studies. Molecules 23, 834 (2018).
-
Lu, H., Wei, T., Lou, H., Shu, X. & Chen, Q. A critical review on communication mechanism within plant-endophytic fungi interactions to cope with biotic and abiotic stresses. J. Fungi 7, 719. https://doi.org/10.3390/jof7090719 (2021).
-
Srivastava, R. A review on phytochemical, pharmacological, and pharmacognostical profile of Wrightia tinctoria: adulterant of Kurchi. Pharmacogn. Rev. 8, 36. https://doi.org/10.4103/0973-7847.125528 (2014).
-
Song, Y. X. et al. Metabolites of the Mangrove fungus Xylaria sp. BL321 from the South China sea. Planta Med. 78, 172–176 (2012).
-
Macías-Rubalcava, M. L. & Sánchez-Fernández, R. E. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J. Microbiol. Biotechnol. 33, 1–22 (2017).
-
Chen, W. et al. Structures and biological activities of secondary metabolites from Xylaria spp. J. Fungi 10, 190 (2024).
-
Chaeprasert, S., Piapukiew, J., Whalley, A. J. S. & Sihanonth, P. Endophytic fungi from Mangrove plant species of Thailand: their antimicrobial and anticancer potentials. Bot. Mar. 53, 555–564 (2010).
-
Kharwar, R. N. et al. Diversity and antimicrobial activity of endophytic fungal community isolated from medicinal plant Cinnamomum camphora. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 82, 557–565. https://doi.org/10.1007/s40011-012-0063-8 (2012).
-
Verma, V. C., Kharwar, R. N. & Strobel, G. A. Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat. Prod. Commun. 4, 1511–1532. https://doi.org/10.1177/1934578X0900401114 (2009).
-
Deshmukh, S. K., Sridhar, K. R., Saxena, S. & Gupta, M. K. Recent advances in the discovery of bioactive metabolites from Xylaria Hill ex Schrank. In Biology, Cultivation and Applications of Mushrooms (eds Arya, A. & Rusevska, K.) 47–116 (Springer, Singapore, 2022). https://doi.org/10.1007/978-981-16-6257-7_3
-
Yadav, G. & Meena, M. Unveiling the hidden culturable endophytic fungal diversity in aerial vegetative parts of Wrightia tinctoria (Roxb.) R.Br. of Southern Aravalli hills. Sci. Rep. 15, 29378 (2025).
-
Doohan, F. & Zhou, B. Fungal pathogens of plants. In Fungi: Biology and Applications (ed Kavanagh, K.) 355–387 (Wiley, 2017). https://doi.org/10.1002/9781119374312.ch14.
-
Gurgel, R. S. et al. Antimicrobial and antioxidant activities of endophytic fungi associated with Arrabidaea chica (Bignoniaceae). J. Fungi 9, 864. https://doi.org/10.3390/jof9080864 (2023).
-
Jang, Y. W. et al. Chemical constituents of the fruiting body of Xylaria polymorpha. Mycobiology 37, 207–210. https://doi.org/10.4489/MYCO.2009.37.3.207 (2009).
-
Xiao-long, Y., Ji-kai, L. I. U., Du-qiang, L. U. O. & Su, Z. Chemical constituents of Xylaria nigripe. Nat. Prod. Res. Dev. 23, 846 (2011).
-
Yadav, G. & Meena, M. Biological control of plant diseases by endophytes. In Endophytic Association: What, Why and How (Volume: Developments in Applied Microbiology and Biotechnology) (eds Shah, M. P. & Deka, D.) 119–135 (Elsevier, United Kingdom, 2022). https://doi.org/10.1016/B978-0-323-91245-7.00007-9.
-
Wangsawat, N. et al. Antioxidant activity and cytotoxicity against cancer cell lines of the extracts from novel Xylaria species associated with termite nests and LC-MS analysis. Antioxidants 10, 1557. https://doi.org/10.3390/antiox10101557 (2021).
-
Rauf, A., Ahmad, Z., Formanowicz, D., Ribaudo, G. & Alomar, T. S. Antioxidant potential of polyphenolic and flavonoid compounds. Front. Chem. 12, 1463755 (2024).
-
Yong, D. L. et al. Antibacterial activity and virulence factors Inhibition by Xylaria sp. (Xylariaceae, Ascomycota): a study of bioactive potential. Trop. Subtrop. Agroecosystems 26, 116. https://doi.org/10.56369/tsaes.4910 (2023).
-
Liu, X. et al. Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl. Microbiol. Biotechnol. 78, 241–247 (2008).
-
Ramesh, V., Arivudainambi, U. E., Thalavaipandian, A., Karunakaran, C. & Rajendran, A. Antibacterial activity of wild Xylaria sp. strain R005 (Ascomycetes) against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Int. J. Med. Mushrooms 14, 47–53. https://doi.org/10.1615/IntJMedMushr.v14.i1.50 (2012).
-
Prajapati, C. et al. Untargeted metabolomics and bioactivities assessment of Xylaria ellisii, an endophytic fungus isolated from the leaf of the plant Acorus calamus Linn. Curr. Pharm. Des. 31, 1781–1799 (2025).
-
Pham, N. S. et al. The cytotoxicity and antioxidant potentials of the endophytic fungus Xylaria sp. KET18 associated with Keteleeria evelyniana Mast. Appl. Sci. 14, 11070. https://doi.org/10.3390/app142311070 (2024).
-
Lykholat, Y. V. et al. Chaenomeles speciosa fruit endophytic fungi isolation and characterization of their antimicrobial activity and the secondary metabolites composition. Beni-Suef Univ. J. Basic. Appl. Sci. 10, 83 (2021).
-
Si, X. et al. Dynamic change of aroma components in Chimonanthus praecox flower scented teas during absorption and storage. Foods 14, 1696 (2025).
-
Mishra, S., Priyanka & Sharma, S. Metabolomic insights into endophyte-derived bioactive compounds. Front. Microbiol. 13, 835931. https://doi.org/10.3389/fmicb.2022.835931 (2022).
-
Singh, A. et al. Phytochemical analysis and antimicrobial activity of an endophytic Fusarium proliferatum (ACQR8), isolated from a folk medicinal plant Cissus quadrangularis L. S. Afr. J. Bot. 140, 87–94. https://doi.org/10.1016/j.sajb.2021.03.004 (2021).
-
Rai, N. et al. Bioprospecting of fungal endophytes from Oroxylum indicum (L.) Kurz with antioxidant and cytotoxic activity. PLoS One 17, e0264673. https://doi.org/10.1371/journal.pone.0264673 (2022).
-
Devi, N. N., Prabakaran, J. J. & Wahab, F. Phytochemical analysis and enzyme analysis of endophytic fungi from Centella asiatica. Asian Pac. J. Trop. Biomed. 2, S1280–S1284 (2012).
-
Settharaksa, S., Jongjareonrak, A., Hmadhlu, P., Chansuwan, W. & Siripongvutikorn, S. Flavonoid, phenolic contents and antioxidant properties of Thai hot curry paste extract and its ingredients as affected of pH, solvent types and high temperature. Int. Food Res. J. 19, 1581–1587 (2012).
-
Abdel-Rahman, T. et al. Antimicrobial activity of terpenoids extracted from Annona muricata seeds and its endophytic Aspergillus niger strain SH3 either singly or in combination. Open Access Maced. J. Med. Sci. 7, 3127–3131. https://doi.org/10.3889/oamjms.2019.793 (2019).
-
Evans, W. C. Trease and Evans’ Pharmacognosy (Elsevier Health Sciences, 2009).
-
Wu, N. et al. Antioxidant activities of extracts and main components of Pigeonpea [Cajanus cajan (L.) Millsp.] leaves. Molecules 14, 1032–1043. https://doi.org/10.3390/molecules14031032 (2009).
-
Ricaño Rodríguez, J., Ricaño Rodríguez, C. & Yong, D. L. Guzmán López, O. First evidence of nitrilase enzymatic activity of Xylaria sp. and its relationship with the biosynthesis of indole-3-acetic acid. Rev. Argent. Microbiol. 55, 214–225. https://doi.org/10.1016/j.ram.2023.01.008 (2023).
-
Kaaniche, F. et al. Bioactive secondary metabolites from new endophytic fungus Curvularia. sp isolated from Rauwolfia macrophylla. PLoS One 14, e0217627. https://doi.org/10.1371/journal.pone.0217627 (2019).
-
Siddhuraju, P. & Manian, S. The antioxidant activity and free radical-scavenging capacity of dietary phenolic extracts from horse gram (Macrotyloma uniflorum (Lam.) Verdc.) seeds. Food Chem. 105, 950–958 (2007).
-
Kaur, N., Arora, D. S., Kalia, N. & Kaur, M. Bioactive potential of endophytic fungus Chaetomium globosum and GC–MS analysis of its responsible components. Sci. Rep. 10, 18792 (2020).
-
Dhakshinamoorthy, M., Packiam, K. K., Kumar, P. S. & Saravanakumar, T. Endophytic fungus Diaporthe caatingaensis MT192326 from Buchanania axillaris: an indicator to produce biocontrol agents in plant protection. Environ. Res. 197, 111147 (2021).
-
Meena, M. et al. Molecular identification and pathogenic impact of Pythium aphanidermatum on ginger (Zingiber officinale): insights into oxidative stress, antioxidant responses, and mycotoxin profiling. Front. Microbiol. 16, 1626700 (2025).
-
Marsik, F. J. & Nambiar, S. Review of carbapenemases and AmpC-beta lactamases. Pediatr. Infect. Dis. J. 30, 1094–1095 (2011).
