Phytochemical and bioactive insights into endophytic fungi from Wrightia tinctoria with emphasis on Xylaria rohrensis metabolites potential

phytochemical-and-bioactive-insights-into-endophytic-fungi-from-wrightia-tinctoria-with-emphasis-on-xylaria-rohrensis-metabolites-potential
Phytochemical and bioactive insights into endophytic fungi from Wrightia tinctoria with emphasis on Xylaria rohrensis metabolites potential

References

  1. Yadav, G. & Meena, M. Bioprospecting of endophytes in medicinal plants of Thar desert: an attractive resource for biopharmaceuticals. Biotechnol. Rep. 30, e00629 (2021).

    Google Scholar 

  2. Guzmán-Trampe, S. et al. Evaluation of the potential bioactivity of an endophytic bacteria isolated from Magnolia dealbata Zucc. Int. J. Curr. Microbiol. App. Sci. 4, 515–525 (2015).

    Google Scholar 

  3. Patil, R. H., Patil, M. P. & Maheshwari, V. L. Bioactive secondary metabolites from endophytic fungi: a review of biotechnological production and their potential applications. Stud. Nat. Prod. Chem. 49, 189–205 (2016).

    Google Scholar 

  4. Yadav, G. & Meena, M. Seasonal dynamics and enzyme profiles of diverse endophytic fungi in Sterculia urens Roxb.: insights into host-associated trends. World J. Microbiol. Biotechnol. 41, 128 (2025).

    Google Scholar 

  5. Masi, M., Nocera, P., Reveglia, P., Cimmino, A. & Evidente, A. Fungal metabolites antagonists towards plant pests and human pathogens: structure-activity relationship studies. Molecules 23, 834 (2018).

    Google Scholar 

  6. Lu, H., Wei, T., Lou, H., Shu, X. & Chen, Q. A critical review on communication mechanism within plant-endophytic fungi interactions to cope with biotic and abiotic stresses. J. Fungi 7, 719. https://doi.org/10.3390/jof7090719 (2021).

    Google Scholar 

  7. Srivastava, R. A review on phytochemical, pharmacological, and pharmacognostical profile of Wrightia tinctoria: adulterant of Kurchi. Pharmacogn. Rev. 8, 36. https://doi.org/10.4103/0973-7847.125528 (2014). 

    Google Scholar 

  8. Song, Y. X. et al. Metabolites of the Mangrove fungus Xylaria sp. BL321 from the South China sea. Planta Med. 78, 172–176 (2012).

    Google Scholar 

  9. Macías-Rubalcava, M. L. & Sánchez-Fernández, R. E. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J. Microbiol. Biotechnol. 33, 1–22 (2017).

    Google Scholar 

  10. Chen, W. et al. Structures and biological activities of secondary metabolites from Xylaria spp. J. Fungi 10, 190 (2024).

    Google Scholar 

  11. Chaeprasert, S., Piapukiew, J., Whalley, A. J. S. & Sihanonth, P. Endophytic fungi from Mangrove plant species of Thailand: their antimicrobial and anticancer potentials. Bot. Mar. 53, 555–564 (2010).

  12. Kharwar, R. N. et al. Diversity and antimicrobial activity of endophytic fungal community isolated from medicinal plant Cinnamomum camphora. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 82, 557–565. https://doi.org/10.1007/s40011-012-0063-8 (2012). 

    Google Scholar 

  13. Verma, V. C., Kharwar, R. N. & Strobel, G. A. Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat. Prod. Commun. 4, 1511–1532. https://doi.org/10.1177/1934578X0900401114 (2009).

    Google Scholar 

  14. Deshmukh, S. K., Sridhar, K. R., Saxena, S. & Gupta, M. K. Recent advances in the discovery of bioactive metabolites from Xylaria Hill ex Schrank. In Biology, Cultivation and Applications of Mushrooms (eds Arya, A. & Rusevska, K.) 47–116 (Springer, Singapore, 2022). https://doi.org/10.1007/978-981-16-6257-7_3

    Google Scholar 

  15. Yadav, G. & Meena, M. Unveiling the hidden culturable endophytic fungal diversity in aerial vegetative parts of Wrightia tinctoria (Roxb.) R.Br. of Southern Aravalli hills. Sci. Rep. 15, 29378 (2025).

    Google Scholar 

  16. Doohan, F. & Zhou, B. Fungal pathogens of plants. In Fungi: Biology and Applications (ed Kavanagh, K.) 355–387 (Wiley, 2017). https://doi.org/10.1002/9781119374312.ch14.

  17. Gurgel, R. S. et al. Antimicrobial and antioxidant activities of endophytic fungi associated with Arrabidaea chica (Bignoniaceae). J. Fungi 9, 864. https://doi.org/10.3390/jof9080864 (2023). 

    Google Scholar 

  18. Jang, Y. W. et al. Chemical constituents of the fruiting body of Xylaria polymorpha. Mycobiology 37, 207–210. https://doi.org/10.4489/MYCO.2009.37.3.207 (2009). 

    Google Scholar 

  19. Xiao-long, Y., Ji-kai, L. I. U., Du-qiang, L. U. O. & Su, Z. Chemical constituents of Xylaria nigripe. Nat. Prod. Res. Dev. 23, 846 (2011).

  20. Yadav, G. & Meena, M. Biological control of plant diseases by endophytes. In Endophytic Association: What, Why and How (Volume: Developments in Applied Microbiology and Biotechnology) (eds Shah, M. P. & Deka, D.) 119–135 (Elsevier, United Kingdom, 2022). https://doi.org/10.1016/B978-0-323-91245-7.00007-9.

  21. Wangsawat, N. et al. Antioxidant activity and cytotoxicity against cancer cell lines of the extracts from novel Xylaria species associated with termite nests and LC-MS analysis. Antioxidants 10, 1557. https://doi.org/10.3390/antiox10101557 (2021). 

    Google Scholar 

  22. Rauf, A., Ahmad, Z., Formanowicz, D., Ribaudo, G. & Alomar, T. S. Antioxidant potential of polyphenolic and flavonoid compounds. Front. Chem. 12, 1463755 (2024).

    Google Scholar 

  23. Yong, D. L. et al. Antibacterial activity and virulence factors Inhibition by Xylaria sp. (Xylariaceae, Ascomycota): a study of bioactive potential. Trop. Subtrop. Agroecosystems 26, 116. https://doi.org/10.56369/tsaes.4910 (2023).

  24. Liu, X. et al. Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl. Microbiol. Biotechnol. 78, 241–247 (2008).

    Google Scholar 

  25. Ramesh, V., Arivudainambi, U. E., Thalavaipandian, A., Karunakaran, C. & Rajendran, A. Antibacterial activity of wild Xylaria sp. strain R005 (Ascomycetes) against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Int. J. Med. Mushrooms 14, 47–53. https://doi.org/10.1615/IntJMedMushr.v14.i1.50 (2012).

  26. Prajapati, C. et al. Untargeted metabolomics and bioactivities assessment of Xylaria ellisii, an endophytic fungus isolated from the leaf of the plant Acorus calamus Linn. Curr. Pharm. Des. 31, 1781–1799 (2025).

    Google Scholar 

  27. Pham, N. S. et al. The cytotoxicity and antioxidant potentials of the endophytic fungus Xylaria sp. KET18 associated with Keteleeria evelyniana Mast. Appl. Sci. 14, 11070. https://doi.org/10.3390/app142311070 (2024). 

    Google Scholar 

  28. Lykholat, Y. V. et al. Chaenomeles speciosa fruit endophytic fungi isolation and characterization of their antimicrobial activity and the secondary metabolites composition. Beni-Suef Univ. J. Basic. Appl. Sci. 10, 83 (2021).

    Google Scholar 

  29. Si, X. et al. Dynamic change of aroma components in Chimonanthus praecox flower scented teas during absorption and storage. Foods 14, 1696 (2025).

    Google Scholar 

  30. Mishra, S., Priyanka & Sharma, S. Metabolomic insights into endophyte-derived bioactive compounds. Front. Microbiol. 13, 835931. https://doi.org/10.3389/fmicb.2022.835931 (2022). 

    Google Scholar 

  31. Singh, A. et al. Phytochemical analysis and antimicrobial activity of an endophytic Fusarium proliferatum (ACQR8), isolated from a folk medicinal plant Cissus quadrangularis L. S. Afr. J. Bot. 140, 87–94. https://doi.org/10.1016/j.sajb.2021.03.004 (2021). 

    Google Scholar 

  32. Rai, N. et al. Bioprospecting of fungal endophytes from Oroxylum indicum (L.) Kurz with antioxidant and cytotoxic activity. PLoS One 17, e0264673. https://doi.org/10.1371/journal.pone.0264673 (2022).

    Google Scholar 

  33. Devi, N. N., Prabakaran, J. J. & Wahab, F. Phytochemical analysis and enzyme analysis of endophytic fungi from Centella asiatica. Asian Pac. J. Trop. Biomed. 2, S1280–S1284 (2012).

    Google Scholar 

  34. Settharaksa, S., Jongjareonrak, A., Hmadhlu, P., Chansuwan, W. & Siripongvutikorn, S. Flavonoid, phenolic contents and antioxidant properties of Thai hot curry paste extract and its ingredients as affected of pH, solvent types and high temperature. Int. Food Res. J. 19, 1581–1587 (2012).

  35. Abdel-Rahman, T. et al. Antimicrobial activity of terpenoids extracted from Annona muricata seeds and its endophytic Aspergillus niger strain SH3 either singly or in combination. Open Access Maced. J. Med. Sci. 7, 3127–3131. https://doi.org/10.3889/oamjms.2019.793 (2019). 

    Google Scholar 

  36. Evans, W. C. Trease and Evans’ Pharmacognosy (Elsevier Health Sciences, 2009).

  37. Wu, N. et al. Antioxidant activities of extracts and main components of Pigeonpea [Cajanus cajan (L.) Millsp.] leaves. Molecules 14, 1032–1043. https://doi.org/10.3390/molecules14031032 (2009). 

    Google Scholar 

  38. Ricaño Rodríguez, J., Ricaño Rodríguez, C. & Yong, D. L. Guzmán López, O. First evidence of nitrilase enzymatic activity of Xylaria sp. and its relationship with the biosynthesis of indole-3-acetic acid. Rev. Argent. Microbiol. 55, 214–225. https://doi.org/10.1016/j.ram.2023.01.008 (2023). 

    Google Scholar 

  39. Kaaniche, F. et al. Bioactive secondary metabolites from new endophytic fungus Curvularia. sp isolated from Rauwolfia macrophylla. PLoS One 14, e0217627. https://doi.org/10.1371/journal.pone.0217627 (2019). 

    Google Scholar 

  40. Siddhuraju, P. & Manian, S. The antioxidant activity and free radical-scavenging capacity of dietary phenolic extracts from horse gram (Macrotyloma uniflorum (Lam.) Verdc.) seeds. Food Chem. 105, 950–958 (2007).

    Google Scholar 

  41. Kaur, N., Arora, D. S., Kalia, N. & Kaur, M. Bioactive potential of endophytic fungus Chaetomium globosum and GC–MS analysis of its responsible components. Sci. Rep. 10, 18792 (2020).

    Google Scholar 

  42. Dhakshinamoorthy, M., Packiam, K. K., Kumar, P. S. & Saravanakumar, T. Endophytic fungus Diaporthe caatingaensis MT192326 from Buchanania axillaris: an indicator to produce biocontrol agents in plant protection. Environ. Res. 197, 111147 (2021).

    Google Scholar 

  43. Meena, M. et al. Molecular identification and pathogenic impact of Pythium aphanidermatum on ginger (Zingiber officinale): insights into oxidative stress, antioxidant responses, and mycotoxin profiling. Front. Microbiol. 16, 1626700 (2025).

    Google Scholar 

  44. Marsik, F. J. & Nambiar, S. Review of carbapenemases and AmpC-beta lactamases. Pediatr. Infect. Dis. J. 30, 1094–1095 (2011).

    Google Scholar 

Download references