Reference:s
-
Bharat Charbe, N. et al. Biomedical applications of three-dimensional bioprinted craniofacial tissue engineering. Bioeng. Transl. Med. 8, e10333 (2023).
-
Pandit, A. & Williams, D. F. Challenges with the development of biomaterials for sustainable tissue engineering. Biomater. Sustain. Tissue Eng. 7, 127 (2019).
-
Zandi, N. et al. Biomimetic proteoglycan nanoparticles for growth factor immobilization and delivery. Biomater. Sci. 8, 1127–1136 (2020).
-
Janmohammadi, M. et al. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact. Mater. 20, 137–163 (2023).
-
Wasyłeczko, M., Sikorska, W. & Chwojnowski, A. Review of synthetic and hybrid scaffolds in cartilage tissue engineering. Membranes 10, 1–28 (2020).
-
Roque, R., Barbosa, G. F. & Guastaldi, A. C. Design and 3D bioprinting of interconnected porous scaffolds for bone regeneration. An additive manufacturing approach. J. Manuf. Process. 64, 655–663 (2021).
-
Wang, F. et al. Fabrication and Characterization of PCL/HA Filament as a 3D printing material using thermal extrusion technology for bone tissue engineering. Polymers 14, 699 (2022).
-
Song, X. et al. Biomimetic 3D Printing of Hierarchical and interconnected porous hydroxyapatite structures with high mechanical strength for bone cell culture. Adv. Eng. Mater. 21, 1800678 (2019).
-
Shahrubudin, N., Lee, T. C. & Ramlan, R. An overview on 3D printing technology: Technological, materials, and applications. Proc. Manuf. 35, 1286–1296 (2019).
-
Arora, A., Pathak, A., Juneja, A., Shakkarwal, P. & Kumar, R. Design & analysis of progressive die using solidworks. Mater. Today Proc. 51, 956–960 (2022).
-
Kim, J. J. & Cho, D. W. Advanced strategies in 3D bioprinting for vascular tissue engineering and disease modelling using smart bioinks. Virtual Phys. Prototyp. 19, e2395470 (2024).
-
Vyas, C. et al. 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 118, 111433 (2021).
-
Roseti, L. et al. Scaffolds for bone tissue engineering: State of the art and new perspectives. Mater. Sci. Eng. C Mater. Biol. Appl. 78, 1246–1262 (2017).
-
Mirshafiei, M., Rashedi, H., Yazdian, F., Rahdar, A. & Baino, F. Advancements in tissue and organ 3D bioprinting: Current techniques, applications, and future perspectives. Mater. Des. 240, 112853 (2024).
-
Dong, L. et al. Facile extrusion 3D printing of gelatine methacrylate/Laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration. Int. J. Biol. Macromol. 188, 72–81 (2021).
-
Owida, H. A. et al. Recent applications of electrospun nanofibrous scaffold in tissue engineering. Appl. Bionics Biomech. 2022, 1953861 (2022).
-
Wang, Y., Liu, C., Song, T., Cao, Z. & Wang, T. 3D printed polycaprolactone/β-tricalcium phosphate/carbon nanotube composite—Physical properties and biocompatibility. Heliyon 10, e26071 (2024).
-
Wong, H. M. et al. Engineered polycaprolactone–magnesium hybrid biodegradable porous scaffold for bone tissue engineering. Prog. Nat. Sci. Mater. Int. 24, 561–567 (2014).
-
Murugan, S. & Parcha, S. R. Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications. J. Mater. Sci. Mater. Med. 32, 93 (2021).
-
Satchanska, G., Davidova, S. & Petrov, P. D. Natural and synthetic polymers for biomedical and environmental applications. Polymers 16, 1159 (2024).
-
Choi, S. et al. Biochemical activity of magnesium ions on human osteoblast migration. Biochem. Biophys. Res. Commun. 531, 588–594 (2020).
-
He, L. Y., Zhang, X. M., Liu, B., Tian, Y. & Ma, W. H. Effect of magnesium ion on human osteoblast activity. Braz. J. Med. Biol. Res. 49, e5257 (2016).
-
Liu, L., Luo, P., Wen, P. & Xu, P. The role of magnesium in the pathogenesis of osteoporosis. Front Endocrinol 15, 1406248 (2024).
-
Rondanelli, M. et al. An update on magnesium and bone health. Biometals 34, 715–736 (2021).
-
Tamjid, E. Polymer-based nanocomposites for tissue engineering: Surface to bulk structural design. Integrated Syst. Data Driven Eng. https://doi.org/10.1007/978-3-031-53652-6_14 (2024).
-
Zhao, D. et al. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials 112, 287–302 (2017).
-
Bonithon, R. et al. Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects. Acta Biomater. 127, 338–352 (2021).
-
Guo, W. et al. Magnesium hydroxide as a versatile nanofiller for 3D-printed PLA bone scaffolds. Polymers 16, 198 (2024).
-
Brokesh, A. M. & Gaharwar, A. K. Inorganic biomaterials for regenerative medicine. ACS Appl. Mater. Interfaces 12, 5319–5344 (2020).
-
Ong, W. K., Chakraborty, S. & Sugii, S. Adipose tissue: Understanding the heterogeneity of stem cells for regenerative medicine. Biomolecules 11, 918 (2021).
-
Abdal-hay, A. et al. A review of protein adsorption and bioactivity characteristics of poly ε-caprolactone scaffolds in regenerative medicine. Eur. Polym. J. 162, 110892 (2022).
-
Das, S. S. et al. Laponite-based Nanomaterials for biomedical applications: A review. Curr Pharm Des 25, 424–443 (2019).
-
Tomás, H., Alves, C. S. & Rodrigues, J. Laponite®: A key nanoplatform for biomedical applications?. Nanomedicine 14, 2407–2420 (2018).
-
Saygili, E. et al. Bilayered laponite/alginate-poly(acrylamide) composite hydrogel for osteochondral injuries enhances macrophage polarization: An in vivo study. Biomater. Adv. 134, 112721 (2022).
-
Rodrigo, M. J. et al. Laponite for biomedical applications: An ophthalmological perspective. Mater. Today Bio 24, 100935 (2023).
-
Ruzicka, B. & Zaccarelli, E. A fresh look at the Laponite phase diagram. Soft Matter 7, 1268–1286 (2011).
-
Choi, D. et al. Structured nanofilms comprising Laponite® and bone extracellular matrix for osteogenic differentiation of skeletal progenitor cells. Mater. Sci. Eng., C 118, 111440 (2021).
-
Ma, Z. et al. 3D bioprinting of proangiogenic constructs with induced immunomodulatory microenvironments through a dual cross-linking procedure using laponite incorporated bioink. Compos. B Eng. 229, 109399 (2022).
-
Wu, M. et al. Silk-based hybrid microfibrous mats as guided bone regeneration membranes. J. Mater. Chem. B 9, 2025–2032 (2021).
-
Kiaee, G. et al. Laponite-based nanomaterials for drug delivery. Adv. Healthc. Mater. 11, 2102054 (2022).
-
Atrian, M., Kharaziha, M., Emadi, R. & Alihosseini, F. Silk-Laponite® fibrous membranes for bone tissue engineering. Appl. Clay Sci. 174, 90–99 (2019).
-
Roozbahani, M. & Kharaziha, M. Dexamethasone loaded Laponite®/porous calcium phosphate cement for treatment of bone defects. Biomed. Mater. 14, 055008 (2019).
-
Atrian, M., Kharaziha, M., Javidan, H., Alihosseini, F. & Emadi, R. Zwitterionic keratin coating on silk-Laponite fibrous membranes for guided bone regeneration. J. Tissue Eng. Regen. Med. 16, 1019–1031 (2022).
-
Stealey, S. T., Gaharwar, A. K. & Zustiak, S. P. Laponite-based nanocomposite hydrogels for drug delivery applications. Pharmaceuticals 16, 821 (2023).
-
Yuan, L. et al. Nano-laponite encapsulated coaxial fiber scaffold promotes endochondral osteogenesis. Regen. Biomater. 11, (2024).
-
Furtado, A. S. A. et al. 3D-printed PCL-based scaffolds with high nanosized synthetic smectic clay content: fabrication, mechanical properties, and biological evaluation for bone tissue engineering. Int. J. Nanomed. 20, 53–69 (2025).
-
Chen, B. et al. Enhancement of critical-sized bone defect regeneration by magnesium oxide-reinforced 3D scaffold with improved osteogenic and angiogenic properties. J. Mater. Sci. Technol. 135, 186–198 (2023).
-
Tamjid, E. Three-dimensional polycaprolactone-bioactive glass composite scaffolds: Effect of particle size and volume fraction on mechanical properties and in vitro cellular behavior. Int. J. Polym. Mater. Polym. Biomater. 67, 1005–1015 (2018).
-
Dong, Q. et al. 3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing. Mater. Sci. Eng. C 129, 112372 (2021).
-
Lu, P. J. et al. Methodology for sample preparation and size measurement of commercial ZnO nanoparticles. J. Food Drug Anal. 26, 628–636 (2018).
-
D638-ASTM Standard Test Method for Tensile Properties of Plastics https://doi.org/10.1520/D0638-14 (2014).
-
Tamjid, E., Bohlouli, M., Mohammadi, S., Alipour, H. & Nikkhah, M. Sustainable drug release from highly porous and architecturally engineered composite scaffolds prepared by 3D printing. J. Biomed. Mater. Res. A 108, 1426–1438 (2020).
-
Sallum, G. C. B. et al. Enhanced bone matrix formation through a dense lamellar scaffold of chitosan, collagen type I, and hyaluronic acid. Carbohydr. Polym. Technol. Appl. 8, 100549 (2024).
-
Hou, Y. et al. Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells. Int. J. Nanomed. 8, 3619 (2013).
-
Wang, L. et al. 3D printed magnesium silicate/β-tricalcium phosphate scaffolds promote coupled osteogenesis and angiogenesis. Front Bioeng Biotechnol 12, (2025).
-
Agarwal, T., Maiti, T. K. & Ghosh, S. K. Decellularized caprine liver-derived biomimetic and pro-angiogenic scaffolds for liver tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 98, 939–948 (2019).
-
Kennedy, D. C., Coen, B., Wheatley, A. M. & McCullagh, K. J. A. Microvascular Experimentation in the Chick Chorioallantoic Membrane as a Model for Screening Angiogenic Agents including from Gene-Modified Cells. Int. J. Mol. Sci. 23, 452 (2021).
-
Todan, L. et al. Comparative study of MgO Nanopowders prepared by different chemical methods. Gels 9, 624 (2023).
-
Battaglia, G. et al. Analysis of particles size distributions in Mg(OH)2 precipitation from highly concentrated MgCl2 solutions. Powder Technol. 398, 117106 (2022).
-
Kafili, G., Tamjid, E., Niknejad, H. & Simchi, A. Development of injectable hydrogels based on human amniotic membrane and polyethyleneglycol-modified nanosilicates for tissue engineering applications. Eur. Polym. J. 179, 111566 (2022).
-
Zhang, Y. et al. Physical adsorption of OH− causes anomalous charging at oxide–water interfaces. Chem. Commun. 60, 9113–9116 (2024).
-
Kim, B. S., Yang, S. S. & Kim, C. S. Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering. Colloids Surf. B Biointerfaces 170, 421–429 (2018).
-
Nel, A. E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557 (2009).
-
Orafa, Z., Bakhshi, H., Arab-Ahmadi, S. & Irani, S. Laponite/amoxicillin-functionalized PLA nanofibrous as osteoinductive and antibacterial scaffolds. Sci. Rep. 12, 1–12 (2022).
-
Li, Q. et al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials. J. Magnesium Alloys 9, 1922–1941 (2021).
-
Arab-Ahmadi, S., Irani, S., Bakhshi, H., Atyabi, F. & Ghalandari, B. Immobilization of carboxymethyl chitosan/laponite on polycaprolactone nanofibers as osteoinductive bone scaffolds. Polym. Adv. Technol. 32, 755–765 (2021).
-
Perumal, G., Sivakumar, P. M., Nandkumar, A. M. & Doble, M. Synthesis of magnesium phosphate nanoflakes and its PCL composite electrospun nanofiber scaffolds for bone tissue regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 109, 110527 (2020).
-
Olivera, N. et al. Effect of LAPONITE® addition on the mechanical, barrier and surface properties of novel biodegradable kafirin nanocomposite films. J. Food Eng. 245, 24–32 (2019).
-
Miao, S. et al. A 3D bioprinted nano-laponite hydrogel construct promotes osteogenesis by activating PI3K/AKT signaling pathway. Mater. Today Bio. 16, 100342 (2022).
-
Lipovka, A. et al. Time-stable wetting effect of plasma-treated biodegradable scaffolds functionalized with graphene oxide. Surf. Coat. Technol. 388, 125560 (2020).
-
Jiang, J., Liu, W., Xiong, Z., Hu, Y. & Xiao, J. Effects of biomimetic hydroxyapatite coatings on osteoimmunomodulation. Biomater. Adv. 134, 112640 (2022).
-
Agyapong, P. O. et al. Synthesis of magnesium oxide from waste magnesium-rich Cucurbita pepo (pumpkin) seeds. Sustain. Environ. 9, 2258473 (2023).
-
Lee, D. J. et al. Effect of pore size in bone regeneration using polydopamine-laced hydroxyapatite collagen calcium silicate scaffolds fabricated by 3D mold printing technology. Orthod. Craniofac. Res. 22, 127 (2019).
-
Morariu, S., Brunchi, C. E., Honciuc, M. & Iftime, M. M. Development of hybrid materials based on chitosan, poly(Ethylene Glycol) and laponite® RD: Effect of clay concentration. Polymers 15, 841 (2023).
-
Woo, H. J., Majid, S. R. & Arof, A. K. Effect of ethylene carbonate on proton conducting polymer electrolyte based on poly(ε-caprolactone) (PCL). Solid State Ion. 252, 102–108 (2013).
-
Fulati, A., Uto, K. & Ebara, M. Influences of crystallinity and crosslinking density on the shape recovery force in poly(ε-Caprolactone)-based shape-memory polymer blends. Polymers 14, 4740 (2022).
-
Kalva, S. N., Ali, F., Velasquez, C. A. & Koç, M. 3D-Printable PLA/Mg Composite Filaments for Potential Bone Tissue Engineering Applications. Polymers. 15, (2023).
-
Mahdavinia, G. R., Rahmani, Z., Mosallanezhad, A., Karami, S. & Shahriari, M. Effect of magnetic laponite RD on swelling and dye adsorption behaviors of κ-carrageenan-based nanocomposite hydrogels. Desalin. Water Treat. 57, 20582–20596 (2016).
-
Xiong, Z., Fu, F. & Li, X. Experimental investigation on laponite as ultra-high-temperature viscosifier of water-based drilling fluids. SN Appl. Sci. 1, 1–8 (2019).
-
Tabesh, E., Kharaziha, M., Mahmoudi, M., Shahnam, E. & Rozbahani, M. Biological and corrosion evaluation of Laponite®: Poly(caprolactone) nanocomposite coating for biomedical applications. Colloids Surf. A Physicochem. Eng. Asp 583, 123945 (2019).
-
Adhikari, U. et al. Embedding magnesium metallic particles in polycaprolactone nanofiber mesh improves applicability for biomedical applications. Acta Biomater. 98, 215–234 (2019).
-
Lee, H. et al. A strategy for enhancing bioactivity and osseointegration with antibacterial effect by incorporating magnesium in polylactic acid based biodegradable orthopedic implant. Int. J. Biol. Macromol. 254, 127797 (2024).
-
Kovács, K. et al. Anisotropy, Anatomical region, and additional variables influence Young’s modulus of bone: A systematic review and meta-analysis. JBMR Plus 7, (2023).
-
Sattary, M., Kefayat, A., Bigham, A. & Rafienia, M. Polycaprolactone/Gelatin/Hydroxyapatite nanocomposite scaffold seeded with Stem cells from human exfoliated deciduous teeth to enhance bone repair: in vitro and in vivo studies. Mater. Technol. 37, 302–315 (2022).
-
Tao, L. et al. In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Adv. 7, 54100–54110 (2017).
-
Brunchi, C. E. & Morariu, S. Laponite®—from dispersion to gel—structure, properties, and applications. Molecules 29, 2823 (2024).
-
Ji, J. et al. Preparation and characterization of bioactive and degradable composites containing ordered mesoporous calcium-magnesium silicate and poly(l-lactide). Appl. Surf. Sci. 317, 1090–1099 (2014).
-
Sharma, C., Dinda, A. K., Potdar, P. D., Chou, C. F. & Mishra, N. C. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. C 64, 416–427 (2016).
-
Tipa, C. et al. Clay-based nanocomposite hydrogels for biomedical applications: A review. Nanomaterials 12, 3308 (2022).
-
Wang, Z., Hu, J., Yu, J. & Chen, D. Preparation and characterization of nano-Laponite/PLGA composite scaffolds for urethra tissue engineering. Mol. Biotechnol. 62, 192–199 (2020).
-
Tamjid, E., Marzooghi, S., Najafi, P. & Behmanesh, M. Three-dimensional gradient porous polymeric composites for osteochondral regeneration. J. Polym. 29, 1–7 (2022).
-
Panahi, Z., Tamjid, E. & Rezaei, M. Surface modification of biodegradable AZ91 magnesium alloy by electrospun polymer nanocomposite: Evaluation of in vitro degradation and cytocompatibility. Surf. Coat. Technol. 386, 125461 (2020).
-
Long, J. et al. Multifunctional magnesium incorporated scaffolds by 3D-Printing for comprehensive postsurgical management of osteosarcoma. Biomaterials 275, 120950 (2021).
-
Wu, J., Cheng, X., Wu, J., Chen, J. & Pei, X. The development of magnesium-based biomaterials in bone tissue engineering: A review. J. Biomed. Mater. Res. B Appl. Biomater. 112, e35326 (2024).
-
Zhao, X. et al. 3D-printed Mg-1Ca/polycaprolactone composite scaffolds with promoted bone regeneration. J. Magnes. Alloys 12, 966–979 (2024).
-
Ma, Y., Yi, S. & Wang, M. Biomimetic mineralization for carbon capture and sequestration. Carbon Capture Sci. Technol. 13, 100257 (2024).
-
Zreiqat, H. et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res 62, 175–184 (2002).
-
Rostami, F., Tamjid, E. & Behmanesh, M. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells. Mater. Sci. Eng., C 115, 111102 (2020).
-
Kalaiselvan, E. et al. Bone marrow-derived mesenchymal stem cell-laden nanocomposite scaffolds enhance bone regeneration in rabbit critical-size segmental bone defect model. J. Funct. Biomater. 15, (2024).
-
Liu, W. et al. Magnesium promotes bone formation and angiogenesis by enhancing MC3T3-E1 secretion of PDGF-BB. Biochem. Biophys. Res. Commun. 528, 664–670 (2020).
-
Hung, C. C., Chaya, A., Liu, K., Verdelis, K. & Sfeir, C. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater. 98, 246–255 (2019).
-
Dawson, J. I. & Oreffo, R. O. C. Clay: New Opportunities for tissue regeneration and biomaterial design. Adv. Mater. 25, 4069–4086 (2013).
-
Bhattarai, G., Shrestha, S. K., Rijal, S., Kook, S. H. & Lee, J. C. Supplemental Magnesium Gluconate Enhances Scaffold-Mediated New Bone Formation and Natural Bone Healing by Angiogenic- and Wnt Signal-Associated Osteogenic Activation. J. Biomed. Mater. Res. A 113, (2025).
-
Ronca, D. et al. Bone tissue engineering: 3D PCL-based nanocomposite scaffolds with tailored properties. Proc. CIRP 49, 51–54 (2016).
-
Miao, S. et al. Optimal proportion of Laponite in hydrogel for promoting bone regeneration via MAPK-Erk pathway. Mater. Des. 257, 114446 (2025).
-
Wang, L., Ruan, M., Bu, Q. & Zhao, C. Signaling pathways driving MSC osteogenesis: Mechanisms, regulation, and translational applications. Int. J. Mol. Sci. 26, 1311 (2025).
-
Tang, Y., Zhang, X., Ge, W. & Zhou, Y. Knockdown of LAP2α inhibits osteogenic differentiation of human adipose-derived stem cells by activating NF-κB. Stem Cell Res. Ther. 11, 1–13 (2020).
-
Yamada, T. et al. β₂ adrenergic receptor activation suppresses bone morphogenetic protein (BMP)-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells. J. Cell Biochem. 116, 1144–1152 (2015).
-
Caviglia, C. et al. In situ electrochemical analysis of alkaline phosphatase activity in 3D cell cultures. Electrochim. Acta 359, 136951 (2020).
-
Zhang, Y. et al. Dynamic regulation of stem cell adhesion and differentiation on degradable piezoelectric poly (L-lactic acid) (PLLA) nanofibers. Biomed. Eng. Lett. 14, 775–784 (2024).
-
Pomiès, P. et al. The cytoskeleton-associated PDZ-LIM protein, ALP, acts on serum response factor activity to regulate muscle differentiation. Mol. Biol. Cell 18, 1723–1733 (2007).
-
Coelho, C. C. et al. The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Sci. Rep. 10, 19098 (2020).
-
Dong, J. et al. Extrusion-based 3D printed magnesium scaffolds with multifunctional MgF2 and MgF2–CaP coatings. Biomater. Sci. 9, 7159–7182 (2021).
-
Hu, J., Shao, J., Huang, G., Zhang, J. & Pan, S. In vitro and in vivo applications of magnesium-enriched biomaterials for vascularized osteogenesis in bone tissue engineering: A review of literature. J. Funct. Biomater. 14, 326 (2023).
-
Gao, P. et al. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application. Bioact. Mater. 5, 680–693 (2020).
-
Page, D. J. et al. Injectable nanoclay gels for angiogenesis. Acta Biomater. 100, 378–387 (2019).
-
Cao, B. et al. 3D bioprinted functional scaffold based on synergistic induction of iprf and laponite exerts efficient and personalised bone regeneration via MiRNA-mediated TGF-β/Smads signaling. Int. J. Surg. https://doi.org/10.1097/JS9.0000000000002312 (2025).
-
Xu, X. et al. Nanosilicate-functionalized polycaprolactone orchestrates osteogenesis and osteoblast-induced multicellular interactions for potential endogenous vascularized bone regeneration. Macromol. Biosci. 22, 2100265 (2022).
-
Byambaa, B. et al. Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv. Healthc. Mater. 6, 1700015 (2017).
-
Chen, C., Huang, B., Liu, Y., Liu, F. & Lee, I. S. Functional engineering strategies of 3D printed implants for hard tissue replacement. Regen. Biomater. 10, rbac094 (2023).
