Coupled osteogenesis and angiogenesis on 3D-printed highly porous PCL/magnesium/laponite nanocomposite scaffold

coupled-osteogenesis-and-angiogenesis-on-3d-printed-highly-porous-pcl/magnesium/laponite-nanocomposite-scaffold
Coupled osteogenesis and angiogenesis on 3D-printed highly porous PCL/magnesium/laponite nanocomposite scaffold

Reference:s

  1. Bharat Charbe, N. et al. Biomedical applications of three-dimensional bioprinted craniofacial tissue engineering. Bioeng. Transl. Med. 8, e10333 (2023).

    Google Scholar 

  2. Pandit, A. & Williams, D. F. Challenges with the development of biomaterials for sustainable tissue engineering. Biomater. Sustain. Tissue Eng. 7, 127 (2019).

    Google Scholar 

  3. Zandi, N. et al. Biomimetic proteoglycan nanoparticles for growth factor immobilization and delivery. Biomater. Sci. 8, 1127–1136 (2020).

    Google Scholar 

  4. Janmohammadi, M. et al. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact. Mater. 20, 137–163 (2023).

    Google Scholar 

  5. Wasyłeczko, M., Sikorska, W. & Chwojnowski, A. Review of synthetic and hybrid scaffolds in cartilage tissue engineering. Membranes 10, 1–28 (2020).

    Google Scholar 

  6. Roque, R., Barbosa, G. F. & Guastaldi, A. C. Design and 3D bioprinting of interconnected porous scaffolds for bone regeneration. An additive manufacturing approach. J. Manuf. Process. 64, 655–663 (2021).

    Google Scholar 

  7. Wang, F. et al. Fabrication and Characterization of PCL/HA Filament as a 3D printing material using thermal extrusion technology for bone tissue engineering. Polymers 14, 699 (2022).

    Google Scholar 

  8. Song, X. et al. Biomimetic 3D Printing of Hierarchical and interconnected porous hydroxyapatite structures with high mechanical strength for bone cell culture. Adv. Eng. Mater. 21, 1800678 (2019).

    Google Scholar 

  9. Shahrubudin, N., Lee, T. C. & Ramlan, R. An overview on 3D printing technology: Technological, materials, and applications. Proc. Manuf. 35, 1286–1296 (2019).

    Google Scholar 

  10. Arora, A., Pathak, A., Juneja, A., Shakkarwal, P. & Kumar, R. Design & analysis of progressive die using solidworks. Mater. Today Proc. 51, 956–960 (2022).

    Google Scholar 

  11. Kim, J. J. & Cho, D. W. Advanced strategies in 3D bioprinting for vascular tissue engineering and disease modelling using smart bioinks. Virtual Phys. Prototyp. 19, e2395470 (2024).

    Google Scholar 

  12. Vyas, C. et al. 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 118, 111433 (2021).

    Google Scholar 

  13. Roseti, L. et al. Scaffolds for bone tissue engineering: State of the art and new perspectives. Mater. Sci. Eng. C Mater. Biol. Appl. 78, 1246–1262 (2017).

    Google Scholar 

  14. Mirshafiei, M., Rashedi, H., Yazdian, F., Rahdar, A. & Baino, F. Advancements in tissue and organ 3D bioprinting: Current techniques, applications, and future perspectives. Mater. Des. 240, 112853 (2024).

    Google Scholar 

  15. Dong, L. et al. Facile extrusion 3D printing of gelatine methacrylate/Laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration. Int. J. Biol. Macromol. 188, 72–81 (2021).

    Google Scholar 

  16. Owida, H. A. et al. Recent applications of electrospun nanofibrous scaffold in tissue engineering. Appl. Bionics Biomech. 2022, 1953861 (2022).

    Google Scholar 

  17. Wang, Y., Liu, C., Song, T., Cao, Z. & Wang, T. 3D printed polycaprolactone/β-tricalcium phosphate/carbon nanotube composite—Physical properties and biocompatibility. Heliyon 10, e26071 (2024).

    Google Scholar 

  18. Wong, H. M. et al. Engineered polycaprolactone–magnesium hybrid biodegradable porous scaffold for bone tissue engineering. Prog. Nat. Sci. Mater. Int. 24, 561–567 (2014).

    Google Scholar 

  19. Murugan, S. & Parcha, S. R. Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications. J. Mater. Sci. Mater. Med. 32, 93 (2021).

    Google Scholar 

  20. Satchanska, G., Davidova, S. & Petrov, P. D. Natural and synthetic polymers for biomedical and environmental applications. Polymers 16, 1159 (2024).

    Google Scholar 

  21. Choi, S. et al. Biochemical activity of magnesium ions on human osteoblast migration. Biochem. Biophys. Res. Commun. 531, 588–594 (2020).

    Google Scholar 

  22. He, L. Y., Zhang, X. M., Liu, B., Tian, Y. & Ma, W. H. Effect of magnesium ion on human osteoblast activity. Braz. J. Med. Biol. Res. 49, e5257 (2016).

    Google Scholar 

  23. Liu, L., Luo, P., Wen, P. & Xu, P. The role of magnesium in the pathogenesis of osteoporosis. Front Endocrinol 15, 1406248 (2024).

    Google Scholar 

  24. Rondanelli, M. et al. An update on magnesium and bone health. Biometals 34, 715–736 (2021).

    Google Scholar 

  25. Tamjid, E. Polymer-based nanocomposites for tissue engineering: Surface to bulk structural design. Integrated Syst. Data Driven Eng. https://doi.org/10.1007/978-3-031-53652-6_14 (2024).

    Google Scholar 

  26. Zhao, D. et al. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials 112, 287–302 (2017).

    Google Scholar 

  27. Bonithon, R. et al. Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects. Acta Biomater. 127, 338–352 (2021).

    Google Scholar 

  28. Guo, W. et al. Magnesium hydroxide as a versatile nanofiller for 3D-printed PLA bone scaffolds. Polymers 16, 198 (2024).

    Google Scholar 

  29. Brokesh, A. M. & Gaharwar, A. K. Inorganic biomaterials for regenerative medicine. ACS Appl. Mater. Interfaces 12, 5319–5344 (2020).

    Google Scholar 

  30. Ong, W. K., Chakraborty, S. & Sugii, S. Adipose tissue: Understanding the heterogeneity of stem cells for regenerative medicine. Biomolecules 11, 918 (2021).

    Google Scholar 

  31. Abdal-hay, A. et al. A review of protein adsorption and bioactivity characteristics of poly ε-caprolactone scaffolds in regenerative medicine. Eur. Polym. J. 162, 110892 (2022).

    Google Scholar 

  32. Das, S. S. et al. Laponite-based Nanomaterials for biomedical applications: A review. Curr Pharm Des 25, 424–443 (2019).

    Google Scholar 

  33. Tomás, H., Alves, C. S. & Rodrigues, J. Laponite®: A key nanoplatform for biomedical applications?. Nanomedicine 14, 2407–2420 (2018).

    Google Scholar 

  34. Saygili, E. et al. Bilayered laponite/alginate-poly(acrylamide) composite hydrogel for osteochondral injuries enhances macrophage polarization: An in vivo study. Biomater. Adv. 134, 112721 (2022).

    Google Scholar 

  35. Rodrigo, M. J. et al. Laponite for biomedical applications: An ophthalmological perspective. Mater. Today Bio 24, 100935 (2023).

    Google Scholar 

  36. Ruzicka, B. & Zaccarelli, E. A fresh look at the Laponite phase diagram. Soft Matter 7, 1268–1286 (2011).

    Google Scholar 

  37. Choi, D. et al. Structured nanofilms comprising Laponite® and bone extracellular matrix for osteogenic differentiation of skeletal progenitor cells. Mater. Sci. Eng., C 118, 111440 (2021).

    Google Scholar 

  38. Ma, Z. et al. 3D bioprinting of proangiogenic constructs with induced immunomodulatory microenvironments through a dual cross-linking procedure using laponite incorporated bioink. Compos. B Eng. 229, 109399 (2022).

    Google Scholar 

  39. Wu, M. et al. Silk-based hybrid microfibrous mats as guided bone regeneration membranes. J. Mater. Chem. B 9, 2025–2032 (2021).

    Google Scholar 

  40. Kiaee, G. et al. Laponite-based nanomaterials for drug delivery. Adv. Healthc. Mater. 11, 2102054 (2022).

    Google Scholar 

  41. Atrian, M., Kharaziha, M., Emadi, R. & Alihosseini, F. Silk-Laponite® fibrous membranes for bone tissue engineering. Appl. Clay Sci. 174, 90–99 (2019).

    Google Scholar 

  42. Roozbahani, M. & Kharaziha, M. Dexamethasone loaded Laponite®/porous calcium phosphate cement for treatment of bone defects. Biomed. Mater. 14, 055008 (2019).

    Google Scholar 

  43. Atrian, M., Kharaziha, M., Javidan, H., Alihosseini, F. & Emadi, R. Zwitterionic keratin coating on silk-Laponite fibrous membranes for guided bone regeneration. J. Tissue Eng. Regen. Med. 16, 1019–1031 (2022).

    Google Scholar 

  44. Stealey, S. T., Gaharwar, A. K. & Zustiak, S. P. Laponite-based nanocomposite hydrogels for drug delivery applications. Pharmaceuticals 16, 821 (2023).

    Google Scholar 

  45. Yuan, L. et al. Nano-laponite encapsulated coaxial fiber scaffold promotes endochondral osteogenesis. Regen. Biomater. 11, (2024).

  46. Furtado, A. S. A. et al. 3D-printed PCL-based scaffolds with high nanosized synthetic smectic clay content: fabrication, mechanical properties, and biological evaluation for bone tissue engineering. Int. J. Nanomed. 20, 53–69 (2025).

    Google Scholar 

  47. Chen, B. et al. Enhancement of critical-sized bone defect regeneration by magnesium oxide-reinforced 3D scaffold with improved osteogenic and angiogenic properties. J. Mater. Sci. Technol. 135, 186–198 (2023).

    Google Scholar 

  48. Tamjid, E. Three-dimensional polycaprolactone-bioactive glass composite scaffolds: Effect of particle size and volume fraction on mechanical properties and in vitro cellular behavior. Int. J. Polym. Mater. Polym. Biomater. 67, 1005–1015 (2018).

    Google Scholar 

  49. Dong, Q. et al. 3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing. Mater. Sci. Eng. C 129, 112372 (2021).

    Google Scholar 

  50. Lu, P. J. et al. Methodology for sample preparation and size measurement of commercial ZnO nanoparticles. J. Food Drug Anal. 26, 628–636 (2018).

    Google Scholar 

  51. D638-ASTM Standard Test Method for Tensile Properties of Plastics https://doi.org/10.1520/D0638-14 (2014).

  52. Tamjid, E., Bohlouli, M., Mohammadi, S., Alipour, H. & Nikkhah, M. Sustainable drug release from highly porous and architecturally engineered composite scaffolds prepared by 3D printing. J. Biomed. Mater. Res. A 108, 1426–1438 (2020).

    Google Scholar 

  53. Sallum, G. C. B. et al. Enhanced bone matrix formation through a dense lamellar scaffold of chitosan, collagen type I, and hyaluronic acid. Carbohydr. Polym. Technol. Appl. 8, 100549 (2024).

    Google Scholar 

  54. Hou, Y. et al. Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells. Int. J. Nanomed. 8, 3619 (2013).

    Google Scholar 

  55. Wang, L. et al. 3D printed magnesium silicate/β-tricalcium phosphate scaffolds promote coupled osteogenesis and angiogenesis. Front Bioeng Biotechnol 12, (2025).

  56. Agarwal, T., Maiti, T. K. & Ghosh, S. K. Decellularized caprine liver-derived biomimetic and pro-angiogenic scaffolds for liver tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 98, 939–948 (2019).

    Google Scholar 

  57. Kennedy, D. C., Coen, B., Wheatley, A. M. & McCullagh, K. J. A. Microvascular Experimentation in the Chick Chorioallantoic Membrane as a Model for Screening Angiogenic Agents including from Gene-Modified Cells. Int. J. Mol. Sci. 23, 452 (2021).

    Google Scholar 

  58. Todan, L. et al. Comparative study of MgO Nanopowders prepared by different chemical methods. Gels 9, 624 (2023).

    Google Scholar 

  59. Battaglia, G. et al. Analysis of particles size distributions in Mg(OH)2 precipitation from highly concentrated MgCl2 solutions. Powder Technol. 398, 117106 (2022).

    Google Scholar 

  60. Kafili, G., Tamjid, E., Niknejad, H. & Simchi, A. Development of injectable hydrogels based on human amniotic membrane and polyethyleneglycol-modified nanosilicates for tissue engineering applications. Eur. Polym. J. 179, 111566 (2022).

    Google Scholar 

  61. Zhang, Y. et al. Physical adsorption of OH− causes anomalous charging at oxide–water interfaces. Chem. Commun. 60, 9113–9116 (2024).

    Google Scholar 

  62. Kim, B. S., Yang, S. S. & Kim, C. S. Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering. Colloids Surf. B Biointerfaces 170, 421–429 (2018).

    Google Scholar 

  63. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557 (2009).

    Google Scholar 

  64. Orafa, Z., Bakhshi, H., Arab-Ahmadi, S. & Irani, S. Laponite/amoxicillin-functionalized PLA nanofibrous as osteoinductive and antibacterial scaffolds. Sci. Rep. 12, 1–12 (2022).

    Google Scholar 

  65. Li, Q. et al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials. J. Magnesium Alloys 9, 1922–1941 (2021).

    Google Scholar 

  66. Arab-Ahmadi, S., Irani, S., Bakhshi, H., Atyabi, F. & Ghalandari, B. Immobilization of carboxymethyl chitosan/laponite on polycaprolactone nanofibers as osteoinductive bone scaffolds. Polym. Adv. Technol. 32, 755–765 (2021).

    Google Scholar 

  67. Perumal, G., Sivakumar, P. M., Nandkumar, A. M. & Doble, M. Synthesis of magnesium phosphate nanoflakes and its PCL composite electrospun nanofiber scaffolds for bone tissue regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 109, 110527 (2020).

    Google Scholar 

  68. Olivera, N. et al. Effect of LAPONITE® addition on the mechanical, barrier and surface properties of novel biodegradable kafirin nanocomposite films. J. Food Eng. 245, 24–32 (2019).

    Google Scholar 

  69. Miao, S. et al. A 3D bioprinted nano-laponite hydrogel construct promotes osteogenesis by activating PI3K/AKT signaling pathway. Mater. Today Bio. 16, 100342 (2022).

    Google Scholar 

  70. Lipovka, A. et al. Time-stable wetting effect of plasma-treated biodegradable scaffolds functionalized with graphene oxide. Surf. Coat. Technol. 388, 125560 (2020).

    Google Scholar 

  71. Jiang, J., Liu, W., Xiong, Z., Hu, Y. & Xiao, J. Effects of biomimetic hydroxyapatite coatings on osteoimmunomodulation. Biomater. Adv. 134, 112640 (2022).

    Google Scholar 

  72. Agyapong, P. O. et al. Synthesis of magnesium oxide from waste magnesium-rich Cucurbita pepo (pumpkin) seeds. Sustain. Environ. 9, 2258473 (2023).

    Google Scholar 

  73. Lee, D. J. et al. Effect of pore size in bone regeneration using polydopamine-laced hydroxyapatite collagen calcium silicate scaffolds fabricated by 3D mold printing technology. Orthod. Craniofac. Res. 22, 127 (2019).

    Google Scholar 

  74. Morariu, S., Brunchi, C. E., Honciuc, M. & Iftime, M. M. Development of hybrid materials based on chitosan, poly(Ethylene Glycol) and laponite® RD: Effect of clay concentration. Polymers 15, 841 (2023).

    Google Scholar 

  75. Woo, H. J., Majid, S. R. & Arof, A. K. Effect of ethylene carbonate on proton conducting polymer electrolyte based on poly(ε-caprolactone) (PCL). Solid State Ion. 252, 102–108 (2013).

    Google Scholar 

  76. Fulati, A., Uto, K. & Ebara, M. Influences of crystallinity and crosslinking density on the shape recovery force in poly(ε-Caprolactone)-based shape-memory polymer blends. Polymers 14, 4740 (2022).

    Google Scholar 

  77. Kalva, S. N., Ali, F., Velasquez, C. A. & Koç, M. 3D-Printable PLA/Mg Composite Filaments for Potential Bone Tissue Engineering Applications. Polymers. 15, (2023).

  78. Mahdavinia, G. R., Rahmani, Z., Mosallanezhad, A., Karami, S. & Shahriari, M. Effect of magnetic laponite RD on swelling and dye adsorption behaviors of κ-carrageenan-based nanocomposite hydrogels. Desalin. Water Treat. 57, 20582–20596 (2016).

    Google Scholar 

  79. Xiong, Z., Fu, F. & Li, X. Experimental investigation on laponite as ultra-high-temperature viscosifier of water-based drilling fluids. SN Appl. Sci. 1, 1–8 (2019).

    Google Scholar 

  80. Tabesh, E., Kharaziha, M., Mahmoudi, M., Shahnam, E. & Rozbahani, M. Biological and corrosion evaluation of Laponite®: Poly(caprolactone) nanocomposite coating for biomedical applications. Colloids Surf. A Physicochem. Eng. Asp 583, 123945 (2019).

    Google Scholar 

  81. Adhikari, U. et al. Embedding magnesium metallic particles in polycaprolactone nanofiber mesh improves applicability for biomedical applications. Acta Biomater. 98, 215–234 (2019).

    Google Scholar 

  82. Lee, H. et al. A strategy for enhancing bioactivity and osseointegration with antibacterial effect by incorporating magnesium in polylactic acid based biodegradable orthopedic implant. Int. J. Biol. Macromol. 254, 127797 (2024).

    Google Scholar 

  83. Kovács, K. et al. Anisotropy, Anatomical region, and additional variables influence Young’s modulus of bone: A systematic review and meta-analysis. JBMR Plus 7, (2023).

  84. Sattary, M., Kefayat, A., Bigham, A. & Rafienia, M. Polycaprolactone/Gelatin/Hydroxyapatite nanocomposite scaffold seeded with Stem cells from human exfoliated deciduous teeth to enhance bone repair: in vitro and in vivo studies. Mater. Technol. 37, 302–315 (2022).

    Google Scholar 

  85. Tao, L. et al. In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Adv. 7, 54100–54110 (2017).

    Google Scholar 

  86. Brunchi, C. E. & Morariu, S. Laponite®—from dispersion to gel—structure, properties, and applications. Molecules 29, 2823 (2024).

    Google Scholar 

  87. Ji, J. et al. Preparation and characterization of bioactive and degradable composites containing ordered mesoporous calcium-magnesium silicate and poly(l-lactide). Appl. Surf. Sci. 317, 1090–1099 (2014).

    Google Scholar 

  88. Sharma, C., Dinda, A. K., Potdar, P. D., Chou, C. F. & Mishra, N. C. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. C 64, 416–427 (2016).

    Google Scholar 

  89. Tipa, C. et al. Clay-based nanocomposite hydrogels for biomedical applications: A review. Nanomaterials 12, 3308 (2022).

    Google Scholar 

  90. Wang, Z., Hu, J., Yu, J. & Chen, D. Preparation and characterization of nano-Laponite/PLGA composite scaffolds for urethra tissue engineering. Mol. Biotechnol. 62, 192–199 (2020).

    Google Scholar 

  91. Tamjid, E., Marzooghi, S., Najafi, P. & Behmanesh, M. Three-dimensional gradient porous polymeric composites for osteochondral regeneration. J. Polym. 29, 1–7 (2022).

    Google Scholar 

  92. Panahi, Z., Tamjid, E. & Rezaei, M. Surface modification of biodegradable AZ91 magnesium alloy by electrospun polymer nanocomposite: Evaluation of in vitro degradation and cytocompatibility. Surf. Coat. Technol. 386, 125461 (2020).

    Google Scholar 

  93. Long, J. et al. Multifunctional magnesium incorporated scaffolds by 3D-Printing for comprehensive postsurgical management of osteosarcoma. Biomaterials 275, 120950 (2021).

    Google Scholar 

  94. Wu, J., Cheng, X., Wu, J., Chen, J. & Pei, X. The development of magnesium-based biomaterials in bone tissue engineering: A review. J. Biomed. Mater. Res. B Appl. Biomater. 112, e35326 (2024).

    Google Scholar 

  95. Zhao, X. et al. 3D-printed Mg-1Ca/polycaprolactone composite scaffolds with promoted bone regeneration. J. Magnes. Alloys 12, 966–979 (2024).

    Google Scholar 

  96. Ma, Y., Yi, S. & Wang, M. Biomimetic mineralization for carbon capture and sequestration. Carbon Capture Sci. Technol. 13, 100257 (2024).

    Google Scholar 

  97. Zreiqat, H. et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res 62, 175–184 (2002).

    Google Scholar 

  98. Rostami, F., Tamjid, E. & Behmanesh, M. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells. Mater. Sci. Eng., C 115, 111102 (2020).

    Google Scholar 

  99. Kalaiselvan, E. et al. Bone marrow-derived mesenchymal stem cell-laden nanocomposite scaffolds enhance bone regeneration in rabbit critical-size segmental bone defect model. J. Funct. Biomater. 15, (2024).

  100. Liu, W. et al. Magnesium promotes bone formation and angiogenesis by enhancing MC3T3-E1 secretion of PDGF-BB. Biochem. Biophys. Res. Commun. 528, 664–670 (2020).

    Google Scholar 

  101. Hung, C. C., Chaya, A., Liu, K., Verdelis, K. & Sfeir, C. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater. 98, 246–255 (2019).

    Google Scholar 

  102. Dawson, J. I. & Oreffo, R. O. C. Clay: New Opportunities for tissue regeneration and biomaterial design. Adv. Mater. 25, 4069–4086 (2013).

    Google Scholar 

  103. Bhattarai, G., Shrestha, S. K., Rijal, S., Kook, S. H. & Lee, J. C. Supplemental Magnesium Gluconate Enhances Scaffold-Mediated New Bone Formation and Natural Bone Healing by Angiogenic- and Wnt Signal-Associated Osteogenic Activation. J. Biomed. Mater. Res. A 113, (2025).

  104. Ronca, D. et al. Bone tissue engineering: 3D PCL-based nanocomposite scaffolds with tailored properties. Proc. CIRP 49, 51–54 (2016).

    Google Scholar 

  105. Miao, S. et al. Optimal proportion of Laponite in hydrogel for promoting bone regeneration via MAPK-Erk pathway. Mater. Des. 257, 114446 (2025).

    Google Scholar 

  106. Wang, L., Ruan, M., Bu, Q. & Zhao, C. Signaling pathways driving MSC osteogenesis: Mechanisms, regulation, and translational applications. Int. J. Mol. Sci. 26, 1311 (2025).

    Google Scholar 

  107. Tang, Y., Zhang, X., Ge, W. & Zhou, Y. Knockdown of LAP2α inhibits osteogenic differentiation of human adipose-derived stem cells by activating NF-κB. Stem Cell Res. Ther. 11, 1–13 (2020).

    Google Scholar 

  108. Yamada, T. et al. β₂ adrenergic receptor activation suppresses bone morphogenetic protein (BMP)-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells. J. Cell Biochem. 116, 1144–1152 (2015).

    Google Scholar 

  109. Caviglia, C. et al. In situ electrochemical analysis of alkaline phosphatase activity in 3D cell cultures. Electrochim. Acta 359, 136951 (2020).

    Google Scholar 

  110. Zhang, Y. et al. Dynamic regulation of stem cell adhesion and differentiation on degradable piezoelectric poly (L-lactic acid) (PLLA) nanofibers. Biomed. Eng. Lett. 14, 775–784 (2024).

    Google Scholar 

  111. Pomiès, P. et al. The cytoskeleton-associated PDZ-LIM protein, ALP, acts on serum response factor activity to regulate muscle differentiation. Mol. Biol. Cell 18, 1723–1733 (2007).

    Google Scholar 

  112. Coelho, C. C. et al. The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Sci. Rep. 10, 19098 (2020).

    Google Scholar 

  113. Dong, J. et al. Extrusion-based 3D printed magnesium scaffolds with multifunctional MgF2 and MgF2–CaP coatings. Biomater. Sci. 9, 7159–7182 (2021).

    Google Scholar 

  114. Hu, J., Shao, J., Huang, G., Zhang, J. & Pan, S. In vitro and in vivo applications of magnesium-enriched biomaterials for vascularized osteogenesis in bone tissue engineering: A review of literature. J. Funct. Biomater. 14, 326 (2023).

    Google Scholar 

  115. Gao, P. et al. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application. Bioact. Mater. 5, 680–693 (2020).

    Google Scholar 

  116. Page, D. J. et al. Injectable nanoclay gels for angiogenesis. Acta Biomater. 100, 378–387 (2019).

    Google Scholar 

  117. Cao, B. et al. 3D bioprinted functional scaffold based on synergistic induction of iprf and laponite exerts efficient and personalised bone regeneration via MiRNA-mediated TGF-β/Smads signaling. Int. J. Surg. https://doi.org/10.1097/JS9.0000000000002312 (2025).

    Google Scholar 

  118. Xu, X. et al. Nanosilicate-functionalized polycaprolactone orchestrates osteogenesis and osteoblast-induced multicellular interactions for potential endogenous vascularized bone regeneration. Macromol. Biosci. 22, 2100265 (2022).

    Google Scholar 

  119. Byambaa, B. et al. Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv. Healthc. Mater. 6, 1700015 (2017).

    Google Scholar 

  120. Chen, C., Huang, B., Liu, Y., Liu, F. & Lee, I. S. Functional engineering strategies of 3D printed implants for hard tissue replacement. Regen. Biomater. 10, rbac094 (2023).

    Google Scholar 

Download references