Data availability
The sequencing data generated for this study are available in the NCBI GenBank and European Nucleotide Archive databases under the accession numbers PV682574–PV682576 and PV686109–PV686110. P. varangrensis culture is deposited at the CBS culture collection at the Westerdijk Fungal Biodiversity Institute in the Netherlands (https://wi.knaw.nl/fungal_table) under accession number CBS 153929. The holotype of the fungus TROM-F-26890, a freeze-dried culture, is deposited at the Arctic University Museum of Norway Fungarium and voucher information can be accessed at the Global Diversity Information Facility (https://www.gbif.org/occurrence/5203505382). Other data are available in the article and its supplementary material.
References
-
Jaklitsch, W. M. et al. A preliminary account of the cucurbitariaceae. Stud. Mycol. 90, 71–118. https://doi.org/10.1016/j.simyco.2017.11.002 (2018).
-
Jaklitsch, W. M. & Voglmayr, H. Fenestelloid clades of the cucurbitariaceae. Persoonia 44, 1–40. https://doi.org/10.3767/persoonia.2020.44.01 (2020).
-
Eisvand, P., Mehrabi-Koushki, M. & Crous, P. W. A revision of the family cucurbitariaceae with additional new taxa from forest trees in Iran. Mycol. Prog. 23, 14–14. https://doi.org/10.1007/s11557-024-01953-5 (2024).
-
Hyde, K. D. et al. Families of dothideomycetes. Fungal Divers. 63, 1–313. https://doi.org/10.1007/s13225-013-0263-4 (2013).
-
Tringali, C., Parisi, A. & Piattelli, M. Magnano Di San Lio, G. Phomenins A and B, bioactive polypropionate pyrones from culture fluids of Phoma Tracheiphila. Nat. Prod. Lett. 3, 101–106. https://doi.org/10.1080/10575639308043845 (1993).
-
Pedras, M. S. C., Morales, V. M., Taylor, J. L. & Phomapyrones Three metabolites from the Blackleg fungus. Phytochem 36, 1315–1318. https://doi.org/10.1016/S0031-9422(00)89658-2 (1994).
-
Pedras, M. S. C. & Chumala, P. B. Phomapyrones from Blackleg causing phytopathogenic fungi: isolation, structure determination, biosyntheses and biological activity. Phytochem 66, 81–87. https://doi.org/10.1016/j.phytochem.2004.10.011 (2005).
-
Ivanova, L., Petersen, D. & Uhlig, S. Phomenins and fatty acids from Alternaria infectoria. Toxicon 55, 1107–1114. https://doi.org/10.1016/j.toxicon.2009.12.017 (2010).
-
Wilk, W., Waldmann, H. & Kaiser, M. Gamma-pyrone natural products–a privileged compound class provided by nature. Bioorg. Med. Chem. 17, 2304–2309. https://doi.org/10.1016/j.bmc.2008.11.001 (2009).
-
Bhat, Z. S. et al. α-pyrones: small molecules with versatile structural diversity reflected in multiple Pharmacological activities-an update. Biomed. Pharmacother. 91, 265–277. https://doi.org/10.1016/j.biopha.2017.04.012 (2017).
-
Juwitaningsih, T., Juliawaty, L. D. & Syah, Y. M. Two pyrones with antibacterial activities from Alpinia malaccensis. Nat. Prod. Commun. 11, 1297–1298. https://doi.org/10.1177/1934578X1601100928 (2016).
-
Lee, J. et al. Marinopyrones A-D, α-pyrones from marine-derived actinomycetes of the family Nocardiopsaceae. Tetrahedron Lett. 57, 1997–2000. https://doi.org/10.1016/j.tetlet.2016.03.084 (2016).
-
Ding, L. et al. Production of new antibacterial 4-hydroxy-alpha-pyrones by a marine fungus Aspergillus niger cultivated in solid medium. Mar. Drugs. 17, 344 https://doi.org/10.3390/md17060344 (2019).
-
Chen, Y. et al. Metabolites with cytotoxic activities from the Mangrove endophytic fungus sp. 2ST2. Front. Chem. 10, 842405 https://doi.org/10.3389/fchem.2022.842405 (2022).
-
Ding, B. et al. Bioactive α-pyrone meroterpenoids from Mangrove endophytic fungus Sp. Nat. Prod. Res. 30, 2805–2812. https://doi.org/10.1080/14786419.2016.1164702 (2016).
-
Oh, D. C., Gontang, E. A., Kauffman, C. A., Jensen, P. R. & Fenical, W. Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete. J. Nat. Prod. 71, 570–575. https://doi.org/10.1021/np0705155 (2008).
-
Shin, J., Paul, V. J. & Fenical, W. New macrocyclic alpha-pyrones and gamma-pyrones from the marine red Alga Phacelocarpus labillardieri. Tetrahedron Lett. 27, 5189–5192. https://doi.org/10.1016/S0040-4039(00)85165-5 (1986).
-
Hussain, M. K. et al. Coumarins as versatile therapeutic phytomolecules: A systematic review. Phytomedicine 134, 155972 https://doi.org/10.1016/j.phymed.2024.155972 (2024).
-
Liu, X. L., Wang, Y. L., Zaleta-Pinet, D. A., Borris, R. P. & Clark, B. R. Antibacterial and anti-biofilm activity of pyrones from a Pseudomonas mosselii strain. Antibiotics-Basel 11, 1655 https://doi.org/10.3390/antibiotics11111655 (2022).
-
Rämä, T. et al. Fungi ahoy! Diversity on marine wooden substrata in the high North. Fungal Ecol. 8, 46–58. https://doi.org/10.1016/j.funeco.2013.12.002 (2014).
-
Ratnasingham, S. & Hebert, P. D. N. bold: the barcode of life data system. Mol. Ecol. Notes. 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x (2007). http://www.barcodinglife.org
-
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).
-
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).
-
Huelsenbeck, J. P. & Ronquist, F. M. R. B. A. Y. E. S. Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754 (2001).
-
EUCAST. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbio Infect. 9, 9–15 https://doi.org/10.1046/j.1469-0691.2003.00790.x (2003).
-
Wiegand, I., Hilpert, K. & Hancock, R. E. W. Agar and broth Dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175. https://doi.org/10.1038/nprot.2007.521 (2008).
-
Markovic, V., Joksovic, M., Markovic, S. & Jakovljevic, I. Influence of anthraquinone scaffold on E/Z isomer distribution of two thiosemicarbazone derivatives. 2D NMR and DFT studies. J. Mol. Struct. 1058, 291–297. https://doi.org/10.1016/j.molstruc.2013.11.025 (2014).
-
Lin, J. et al. Room temperature stable E, Z -diphosphenes: their isomerization, coordination, and cycloaddition chemistry. Chem. Sci. (Cambridge). 14, 10944–10952. https://doi.org/10.1039/d3sc04506d (2023).
-
Hantosh, L. A., Sami, S. A. & Fadhil, G. F. Structure-stability and energy storage capacity of Para acetyl-dichloro chalcone and Chromen isomers: a density functional theory investigation. Orient. J. Chem. 40, 1774–1785. https://doi.org/10.13005/ojc/400630 (2024).
-
Kearns, D. R. The temperature dependence of the cis—trans photoisomerization of Azo compounds: theoretical considerations. J. Phys. Chem. 69, 1062–1065. https://doi.org/10.1021/j100887a504 (1965).
-
Eade, S. J. et al. Biomimetic synthesis of pyrone-derived natural products: exploring chemical pathways from a unique polyketide precursor. J. Org. Chem. 73, 4830–4839. https://doi.org/10.1021/jo800220w (2008).
-
Sharma, P., Powell, K. J., Burnley, J., Awaad, A. S. & Moses, J. E. Total synthesis of polypropionate-derived γ-pyrone natural products. Synthesis 2011, 2865–2892. https://doi.org/10.1055/s-0030-1260168 (2011).
-
Bhat, Z. S., Rather, M. A., Syed, K. Y. & Ahmad, Z. α-Pyrones and their hydroxylated analogs as promising scaffolds against Mycobacterium tuberculosis. Future Med. Chem. 9, 2053–2067. https://doi.org/10.4155/fmc-2017-0116 (2017).
Acknowledgements
We are grateful for the technical support of Dr. Chun Li (Marbio, Faculty of Bioscience, Fisheries, and Economics, UiT) for PCR amplifications, DNA sequencing of marker genes, and running the bioactivity testing. We acknowledge the Barcode of Life Systems for their help with DNA extractions, PCR amplification, and sequencing of marker genes (project NFM). In addition, we sincerely thank Per Pippin Aspaas from the University Library at UiT for helping us with the Latin species epithet.
Funding
Open access funding provided by UiT The Arctic University of Norway (incl University Hospital of North Norway). This research was fully funded through a grant by the Centre for New Antibacterial Strategies (CANS; Tromsø research foundation grant 2520855) at UiT-The Arctic University of Norway. The Norwegian Biodiversity Information Centre (Artsdatabanken; grant 2552164) additionally supported it.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Maharjan, S., Lesjø, J.M., Isaksson, J. et al. Parafenestella varangrensis sp. nov., a phomenin producing fungus from the Arctic. Sci Rep (2025). https://doi.org/10.1038/s41598-025-33070-y
-
Received:
-
Accepted:
-
Published:
-
DOI: https://doi.org/10.1038/s41598-025-33070-y
