Rational design and in silico characterization of a multiepitope mRNA vaccine candidate against human metapneumovirus (hMPV) using reverse vaccinology and immunoinformatics approaches

rational-design-and-in-silico-characterization-of-a-multiepitope-mrna-vaccine-candidate-against-human-metapneumovirus-(hmpv)-using-reverse-vaccinology-and-immunoinformatics-approaches
Rational design and in silico characterization of a multiepitope mRNA vaccine candidate against human metapneumovirus (hMPV) using reverse vaccinology and immunoinformatics approaches

References

  1. Panda, S., Mohakud, N. K., Pena, L. & Kumar, S. Human metapneumovirus: review of an important respiratory pathogen. Int. J. Infect. Dis. 25, 45–52 (2014).

    Google Scholar 

  2. Piñana, M. et al. The emergence, impact, and evolution of human metapneumovirus variants from 2014 to 2021 in Spain. J. Infect. 87 (2), 103–110. https://doi.org/10.1016/j.jinf.2023.05.004 (2023).

    Google Scholar 

  3. Samuel, S., Nanjappa, S., Cooper, C. D. & Greene, J. N. Human metapneumovirus infection in immunocompromised patients. Cancer Control. 23 (4), 442–445 (2016).

    Google Scholar 

  4. Devanathan, N. et al. Emerging lineages A2.2.1 and A2.2.2 of human metapneumovirus (hMPV) in pediatric respiratory infections: insights from India. IJID Reg. 14, 100486. https://doi.org/10.1016/j.ijregi.2024.100486 (2025).

    Google Scholar 

  5. Costa-Filho, R. C., Saddy, F., Costa, J. L. F., Tavares, L. R. & Castro Faria Neto, H. C. The silent threat of human metapneumovirus: clinical challenges and diagnostic insights from a severe pneumonia case. Microorganisms 13 (1), 73 (2025).

    Google Scholar 

  6. Biacchesi, S. et al. Recombinant human metapneumovirus lacking the small hydrophobic SH and/or attachment G glycoprotein: deletion of G yields a promising vaccine candidate. J. Virol. 78 (23), 12877–12887 (2004).

    Google Scholar 

  7. Van den Hoogen, B. G. et al. A newly discovered human Pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 7 (6), 719–724 (2001).

    Google Scholar 

  8. Wang, X. et al. Global burden of acute lower respiratory infection associated with human metapneumovirus in children under 5 years in 2018: a systematic review and modelling study. Lancet Global Health. 9 (1), e33–e43 (2021).

    Google Scholar 

  9. Dubois, J. et al. Strain-dependent impact of G and SH deletions provide new insights for live-attenuated HMPV vaccine development. Vaccines 7 (4), 164 (2019).

    Google Scholar 

  10. Hsieh, C. L. et al. Structure-based design of prefusion-stabilized human metapneumovirus fusion proteins. Nat. Commun. 13 (1), 1299 (2022).

    Google Scholar 

  11. Bakkers, M. J. et al. Efficacious human metapneumovirus vaccine based on AI-guided engineering of a closed prefusion trimer. Nat. Commun. 15 (1), 6270 (2024).

    Google Scholar 

  12. Shahda, S., Carlos, W., Kiel, P., Khan, B. & Hage, C. The human metapneumovirus: a case series and review of the literature. Transpl. Infect. Disease. 13 (3), 324–328 (2011).

    Google Scholar 

  13. van den Hoogen, B. G., Bestebroer, T. M., Osterhaus, A. D. & Fouchier, R. A. Analysis of the genomic sequence of a human metapneumovirus. Virology 295 (1), 119–132 (2002).

    Google Scholar 

  14. Piyaratna, R., Tollefson, S. J. & Williams, J. V. Genomic analysis of four human metapneumovirus prototypes. Virus Res. 160 (1–2), 200–205 (2011).

    Google Scholar 

  15. Andrade, C. A. et al. Innate immune components that regulate the pathogenesis and resolution of hRSV and hMPV infections. Viruses 12 (6), 637 (2020).

    Google Scholar 

  16. Wilson, R. L. et al. Function of small hydrophobic proteins of paramyxovirus. J. Virol. 80 (4), 1700–1709 (2006).

    Google Scholar 

  17. Huang, J., Miller, R. J. & Mousa, J. J. A Pan-Pneumovirus vaccine based on immunodominant epitopes of the fusion protein. Front. Immunol. 13, 941865 (2022).

    Google Scholar 

  18. Herfst, S. & Fouchier, R. A. Vaccination approaches to combat human metapneumovirus lower respiratory tract infections. J. Clin. Virol. 41 (1), 49–52 (2008).

    Google Scholar 

  19. Liu, L. Molecular biology of human metapneumovirus (HMPV) attachment protein. (2008).

  20. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discovery. 17 (4), 261–279 (2018).

    Google Scholar 

  21. Adam, K. M. Immunoinformatics approach for multi-epitope vaccine design against structural proteins and ORF1a polyprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Trop. Dis. Travel Med. Vaccines. 7, 1–13 (2021).

    Google Scholar 

  22. Lim, H. X., Lim, J., Jazayeri, S. D., Poppema, S. & Poh, C. L. Development of multi-epitope peptide-based vaccines against SARS-CoV-2. Biomedical J. 44 (1), 18–30 (2021).

    Google Scholar 

  23. Awasthi, A., Sharma, G. & Agrawal, P. Computational approaches for vaccine designing. In Bioinformatics; Elsevier: ; pp. 317–335. (2022).

  24. Brister, J. R., Ako-adjei, D., Bao, Y. & Blinkova, O. N. C. B. I. Viral genomes resource. Nucleic Acids Res. 43 (D1), D571–D577. https://doi.org/10.1093/nar/gku1207 (2014).

    Google Scholar 

  25. Rencilin, C. F., Rosy, J. C., Mohan, M., Coico, R. & Sundar, K. Identification of SARS-CoV-2 CTL epitopes for development of a multivalent subunit vaccine for COVID-19. Infect. Genet. Evol. 89, 104712. https://doi.org/10.1016/j.meegid.2021.104712 (2021).

    Google Scholar 

  26. Salod, Z. & Mahomed, O. Mapping potential vaccine candidates predicted by VaxiJen for different viral pathogens between 2017–2021—A scoping review. Vaccines 10 (11), 1785 (2022).

    Google Scholar 

  27. Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics 26 (5), 680–682 (2010).

    Google Scholar 

  28. Saha, S. & Raghava, G. P. S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins Struct. Funct. Bioinform. 65 (1), 40–48 (2006).

    Google Scholar 

  29. Rouzbahani, A. K., Kheirandish, F. & Hosseini, S. Z. Design of a multi-epitope-based peptide vaccine against the S and N proteins of SARS-COV-2 using immunoinformatics approach. Egypt. J. Med. Hum. Genet. 23 (1), 16 (2022).

    Google Scholar 

  30. Fleri, W. et al. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front. Immunol. 8, 278 (2017).

    Google Scholar 

  31. Kakakhel, S. et al. Annotation of potential vaccine targets and designing of mRNA-Based Multi-Epitope vaccine against lumpy skin disease virus via reverse vaccinology and Agent-Based modeling. Bioeng. (Basel). 10 (4). https://doi.org/10.3390/bioengineering10040430 (2023).

  32. Khan, K., Khan, S. A., Jalal, K., Ul-Haq, Z. & Uddin, R. Immunoinformatic approach for the construction of multi-epitopes vaccine against Omicron COVID-19 variant. Virology 572, 28–43 (2022).

    Google Scholar 

  33. Dhanda, S. K., Vir, P. & Raghava, G. P. Designing of interferon-gamma inducing MHC class-II binders. Biol. Direct. 8, 1–15 (2013).

    Google Scholar 

  34. Dhanda, S. K., Gupta, S., Vir, P. & Raghava, G. P. Prediction of IL4 inducing peptides. Clin. Dev. Immunol. 2013 (263952). https://doi.org/10.1155/2013/263952 (2013).

  35. Doytchinova, I. A. & Flower, D. R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 8 (4). https://doi.org/10.1186/1471-2105-8-4 (2007).

  36. Elfadil, M. M. et al. Reverse vaccinology and immunoinformatics approaches for multi-epitope vaccine design against Klebsiella pneumoniae reveal a novel vaccine target protein. J. Genetic Eng. Biotechnol. 23 (3), 100510. https://doi.org/10.1016/j.jgeb.2025.100510 (2025).

    Google Scholar 

  37. Gupta, S. et al. In Silico approach for predicting toxicity of peptides and proteins. PloS One. 8 (9), e73957 (2013).

    Google Scholar 

  38. Hon, J. et al. SoluProt: prediction of soluble protein expression in Escherichia coli. Bioinformatics 37 (1), 23–28 (2021).

    Google Scholar 

  39. Dimitrov, I., Flower, D. R. & Doytchinova, I. AllerTOP–a server for in Silico prediction of allergens. BMC Bioinform. 14 Suppl 6 (Suppl 6), S4. https://doi.org/10.1186/1471-2105-14-s6-s4 (2013).

    Google Scholar 

  40. Bui, H. H. et al. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 7, 1–5 (2006).

    Google Scholar 

  41. Fadaka, A. O. et al. Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus. Sci. Rep. 11 (1), 19707 (2021).

    Google Scholar 

  42. Kottarathil, A. et al. Designing multi-epitope-based vaccine targeting Immunogenic proteins of Streptococcus mutans using immunoinformatics to prevent caries. Microbe 7, 100320. https://doi.org/10.1016/j.microb.2025.100320 (2025).

    Google Scholar 

  43. Tarrahimofrad, H., Rahimnahal, S., Zamani, J., Jahangirian, E. & Aminzadeh, S. Designing a multi-epitope vaccine to provoke the robust immune response against influenza A H7N9. Sci. Rep. 11 (1), 24485 (2021).

    Google Scholar 

  44. Khan, M. T. et al. Immunoinformatics and molecular dynamics approaches: next generation vaccine design against West nile virus. Plos One. 16 (6), e0253393 (2021).

    Google Scholar 

  45. Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44 (2), 283–292 (1986).

    Google Scholar 

  46. Liu, Q. Comparative analysis of base biases around the stop codons in six eukaryotes. Biosystems 81 (3), 281–289 (2005).

    Google Scholar 

  47. Ahammad, I. & Lira, S. S. Designing a novel mRNA vaccine against SARS-CoV-2: an immunoinformatics approach. Int. J. Biol. Macromol. 162, 820–837 (2020).

    Google Scholar 

  48. Kreiter, S. et al. Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J. Immunol. 180 (1), 309–318 (2008).

    Google Scholar 

  49. Gallie, D. R. The cap and Poly (A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5 (11), 2108–2116 (1991).

    Google Scholar 

  50. Munroe, D. & Jacobson, A. mRNA Poly (A) tail, a 3′ enhancer of translational initiation. Mol. Cell. Biol. 10 (7), 3441–3455 (1990).

    Google Scholar 

  51. Bernstein, P. & Ross, J. Poly (A), Poly (A) binding protein and the regulation of mRNA stability. Trends Biochem. Sci. 14 (9), 373–377 (1989).

    Google Scholar 

  52. Zhao, Y. et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 70 (22), 9053–9061 (2010).

    Google Scholar 

  53. Holtkamp, S. et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108 (13), 4009–4017 (2006).

    Google Scholar 

  54. Pourseif, M. M. et al. A domain-based vaccine construct against SARS-CoV-2, the causative agent of COVID-19 pandemic: development of self-amplifying mRNA and peptide vaccines. BioImpacts: BI. 11 (1), 65 (2020).

    Google Scholar 

  55. Wang, Z., Day, N., Trifillis, P. & Kiledjian, M. An mRNA stability complex functions with Poly (A)-binding protein to stabilize mRNA in vitro. Mol. Cell. Biol. 19 (7), 4552–4560 (1999).

    Google Scholar 

  56. Priyadarsini, S. et al. In Silico structural delineation of nucleocapsid protein of SARS-CoV-2. J. Entomol. Zool. Stud. 8 (2), 06–10 (2020).

    Google Scholar 

  57. Buchan, D. W. & Jones, D. T. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 47 (W1), W402–W407 (2019).

    Google Scholar 

  58. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36 (suppl_2), W70–W74 (2008).

    Google Scholar 

  59. Lorenz, R. et al. ViennaRNA package 2.0. Algorithms Mol. Biology. 6, 1–14 (2011).

    Google Scholar 

  60. Kim, D. E., Chivian, D. & Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32 (suppl_2), W526–W531 (2004).

    Google Scholar 

  61. Heo, L., Park, H., Seok, C. & GalaxyRefine Protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 41 (W1), W384–W388 (2013).

    Google Scholar 

  62. Wiederstein, M. & Sippl, M. J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35 (suppl_2), W407–W410 (2007).

    Google Scholar 

  63. Kozakov, D. et al. The cluspro web server for protein–protein Docking. Nat. Protoc. 12 (2), 255–278 (2017).

    Google Scholar 

  64. Laskowski, R. A. et al. Structural summaries of PDB entries. Protein Sci. 27 (1), 129–134 (2018).

    Google Scholar 

  65. Lopéz-Blanco, J. R., Garzón, J. I. & Chacón, P. iMod: multipurpose normal mode analysis in internal coordinates. Bioinformatics 27 (20), 2843–2850 (2011).

    Google Scholar 

  66. López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S. & Chacón, P. iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res. 42 (W1), W271–W276 (2014).

    Google Scholar 

  67. Bai, Y., Zhou, M., Wang, N., Yang, Y. & Wang, D. Designing a candidate multi-epitope vaccine against transmissible gastroenteritis virus based on immunoinformatic and molecular dynamics. Int. J. Mol. Sci. 25 (16), 8828 (2024).

    Google Scholar 

  68. Kaur, A. et al. Rational design and computational evaluation of a multi-epitope vaccine for Monkeypox virus: Insights into binding stability and immunological memory. Heliyon 10 (16), e36154. https://doi.org/10.1016/j.heliyon.2024.e36154 (2024).

  69. Kutzner, C. et al. V. GROMACS in the cloud: A global supercomputer to speed up alchemical drug design. J. Chem. Inf. Model. 62 (7), 1691–1711 (2022).

    Google Scholar 

  70. Alabbas, A. B. Integrativesubtractive proteomics, immunoinformatics, docking, and simulation approaches reveal candidate vaccine against sin Nombre orthohantavirus. Front. Immunol. 13, 1022159 (2022).

    Google Scholar 

  71. Grote, A. et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 33 (suppl_2), W526–W531 (2005).

    Google Scholar 

  72. Fu, H. et al. Codon optimization with deep learning to enhance protein expression. Sci. Rep. 10 (1), 17617 (2020).

    Google Scholar 

  73. Khan, N. T., Zinnia, M. A. & Islam, A. B. M. M. K. Modeling mRNA-based vaccine YFV. E1988 against yellow fever virus E-protein using immuno-informatics and reverse vaccinology approach. J. Biomol. Struct. Dynamics. 41 (5), 1617–1638 (2023).

    Google Scholar 

  74. Rapin, N., Lund, O., Bernaschi, M. & Castiglione, F. Computational immunology Meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PloS One 5(4), e9862. (2010).

    Google Scholar 

  75. Aziz, S. et al. Exploring whole proteome to contrive multi-epitope-based vaccine for neocov: an immunoinformtics and in-silico approach. Front. Immunol. 13, 956776 (2022).

    Google Scholar 

  76. Castiglione, F., Deb, D., Srivastava, A. P., Liò, P. & Liso, A. From infection to immunity: Understanding the response to SARS-CoV2 through in-silico modeling. Front. Immunol. 12, 646972 (2021).

    Google Scholar 

  77. Qiu, J. et al. Integrated in-silico design and in vivo validation of multi-epitope vaccines for Norovirus. Virol. J. 22 (1), 166. https://doi.org/10.1186/s12985-025-02796-6 (2025).

    Google Scholar 

  78. Kuang, L. et al. Changes in the epidemiological patterns of respiratory syncytial virus and human metapneumovirus infection among pediatric patients and their correlation with severe cases: a long-term retrospective study. Front. Cell. Infect. Microbiol. 14, 1435294 (2024).

    Google Scholar 

  79. Contentin, L., Guillon, A., Garot, D., Gaudy-Graffin, C. & Perrotin, D. Acute respiratory distress syndrome secondary to human metapneumovirus infection in a young healthy adult. Intensive Care Med. 39, 533–534 (2013).

    Google Scholar 

  80. Renaud, C. et al. Mortality rates of human metapneumovirus and respiratory syncytial virus lower respiratory tract infections in hematopoietic cell transplantation recipients. Biol. Blood Marrow Transpl. 19 (8), 1220–1226. https://doi.org/10.1016/j.bbmt.2013.05.005 (2013).

    Google Scholar 

  81. Kapandji, N. et al. Clinical significance of human metapneumovirus detection in critically ill adults with lower respiratory tract infections. Ann. Intensiv. Care. 13 (1), 21. https://doi.org/10.1186/s13613-023-01117-w (2023).

    Google Scholar 

  82. Saeed, M. I. & Minireview Designing next generation human metapneumovirus (HMPV) vaccine. Clin. Exp. Vaccine Res. 14 (2), 116–118. https://doi.org/10.7774/cevr.2025.14.e12 (2025).

    Google Scholar 

  83. Schnyder Ghamloush, S. et al. Safety and immunogenicity of an mRNA-Based hMPV/PIV3 combination vaccine in seropositive children. Pediatrics 153 (6). https://doi.org/10.1542/peds.2023-064748 (2024).

  84. Lee, Y. Z. et al. Rational design of uncleaved prefusion-closed trimer vaccines for human respiratory syncytial virus and metapneumovirus. Nat. Commun. 15 (1), 9939 (2024).

    Google Scholar 

  85. Albaqami, F. F. et al. Tahir Ul Qamar, M. Computational modeling and evaluation of potential mRNA and Peptide-Based vaccine against Marburg virus (MARV) to provide immune protection against hemorrhagic fever. Biomed. Res. Int. 2023 (1), 5560605 (2023).

    Google Scholar 

  86. Sahin, U. et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 586 (7830), 594–599. https://doi.org/10.1038/s41586-020-2814-7 (2020).

    Google Scholar 

  87. Ong, E., Wong, M. U., Huffman, A. & He, Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. Front. Immunol. 11, 1581 (2020).

    Google Scholar 

  88. Patel, R., Kaki, M., Potluri, V. S., Kahar, P. & Khanna, D. A comprehensive review of SARS-CoV-2 vaccines: Pfizer, moderna & Johnson & Johnson. Hum. Vaccin Immunother. 18 (1), 2002083. https://doi.org/10.1080/21645515.2021.2002083 (2022).

    Google Scholar 

  89. Melero, J. A. & Mas, V. The Pneumovirinae fusion (F) protein: A common target for vaccines and antivirals. Virus Res. 209, 128–135 (2015).

    Google Scholar 

  90. Ma, S. et al. Development of a novel multi-epitope mRNA vaccine candidate to combat HMPV virus. Hum. Vaccines Immunotherapeutics. 20 (1), 2293300 (2024).

    Google Scholar 

  91. Cheemarla, N. R. & Guerrero-Plata, A. Human metapneumovirus attachment protein contributes to neutrophil recruitment into the airways of infected mice. Viruses 9 (10), 310 (2017).

    Google Scholar 

  92. Aerts, L. et al. Adjuvant effect of the human metapneumovirus (HMPV) matrix protein in HMPV subunit vaccines. J. Gen. Virol. 96 (4), 767–774 (2015).

    Google Scholar 

  93. Zhang, Y. et al. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase. J. Virol. 88 (19), 11411–11429 (2014).

    Google Scholar 

  94. Skiadopoulos, M. H. et al. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity. Virology 345 (2), 492–501 (2006).

    Google Scholar 

  95. Khatrawi, E. M., Luqman Ali, S., Ali, S. Y., Abduldayeva, A. & Mugibel, M. A. A. Robust multiepitope vaccine from glycoproteins against human metapneumovirus genotypes A2a, A2b, and A2c by utilizing immunoinformatics and reverse vaccinology approaches. Viral Immunol. 38 (5), 157–171 (2025).

  96. Rahman, M. S. et al. Epitope-based chimeric peptide vaccine design against S, M and E proteins of SARS-CoV-2, the etiologic agent of COVID-19 pandemic: an in Silico approach. PeerJ 8, e9572 (2020).

    Google Scholar 

  97. Aram, C., Alijanizadeh, P., Saleki, K. & Karami, L. Development of an ancestral DC and TLR4-inducing multi-epitope peptide vaccine against the Spike protein of SARS-CoV and SARS-CoV-2 using the advanced immunoinformatics approaches. Biochem. Biophys. Rep. 39, 101745 (2024).

    Google Scholar 

  98. Dey, J. et al. Exploring Klebsiella pneumoniae capsule polysaccharide proteins to design multiepitope subunit vaccine to fight against pneumonia. Expert Rev. Vaccines. 21 (4), 569–587 (2022).

    Google Scholar 

  99. Gasteiger, E. Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook/Human Press Inc. (2005).

  100. Oluwagbemi, O. O. et al. Bioinformatics, computational informatics, and modeling approaches to the design of mRNA COVID-19 vaccine candidates. Computation 10 (7), 117 (2022).

    Google Scholar 

  101. Kurt-Jones, E. A. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1 (5), 398–401 (2000).

    Google Scholar 

  102. Oladipo, E. K. et al. Exploring computational approaches to design mRNA vaccine against vaccinia and Mpox viruses. Immun. Inflamm. Dis. 12 (8), e1360 (2024).

    Google Scholar 

  103. Oladipo, E. K. et al. Utilizing immunoinformatics for mRNA vaccine design against influenza D virus. BioMedInformatics 4 (2), 1572–1588 (2024).

    Google Scholar 

  104. Ma, S. et al. Development of a novel multi-epitope mRNA vaccine candidate to combat HMPV virus. Hum. Vaccin Immunother. 19 (3), 2293300. https://doi.org/10.1080/21645515.2023.2293300 (2023).

    Google Scholar 

  105. Mohammadi, Y., Nezafat, N., Negahdaripour, M., Eskandari, S. & Zamani, M. In Silico design and evaluation of a novel mRNA vaccine against BK virus: a reverse vaccinology approach. Immunol. Res. 71 (3), 422–441 (2023).

    Google Scholar 

  106. Ali, A. et al. Multi-epitope-based vaccine models prioritization against astrovirus MLB1 using immunoinformatics and reverse vaccinology approaches. J. Genetic Eng. Biotechnol. 23 (1), 100451. https://doi.org/10.1016/j.jgeb.2024.100451 (2025).

    Google Scholar 

  107. Patel, M. C. et al. Novel drugs targeting Toll-like receptors for antiviral therapy. Future Virol. 9 (9), 811–829 (2014).

    Google Scholar 

  108. Ma, S. et al. Development of a novel multi-epitope subunit mRNA vaccine candidate to combat acinetobacter baumannii. Sci. Rep. 15 (1), 1410. https://doi.org/10.1038/s41598-024-84823-0 (2025).

    Google Scholar 

  109. Mahafujul Alam, S. S. et al. Immunoinformatics based designing of a multi-epitope cancer vaccine targeting programmed cell death ligand 1. Sci. Rep. 15 (1), 12420. https://doi.org/10.1038/s41598-025-87063-y (2025).

    Google Scholar 

  110. Bhattacharya, K. et al. Multi-epitope vaccine design against Monkeypox virus via reverse vaccinology method exploiting immunoinformatic and bioinformatic approaches. Vaccines 10 (12), 2010 (2022).

    Google Scholar 

  111. Kesavan, L. R., Kamalan, B. C. & Sivanandan, S. Targeting human inosine 5’monophosphate dehydrogenase type 2 for anti-dengue lead identification–a computational approach. J. Biomol. Struct. Dyn. 43 (14), 1–15 (2024).

  112. Tahir ul Qamar, M. et al. Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: immunoinformatics and in Silico approaches. PloS One. 15 (12), e0244176 (2020).

    Google Scholar 

  113. Rafi, M. et al. Design of a multi-epitope vaccine against SARS-CoV-2: immunoinformatic and computational methods. RSC Adv. 12, 4288–4310 (2022).

    Google Scholar 

  114. Saleki, K. et al. Engineering a novel Immunogenic chimera protein utilizing bacterial infections associated with atherosclerosis to induce a deviation in adaptive immune responses via immunoinformatics approaches. Infect. Genet. Evol. 102, 105290. https://doi.org/10.1016/j.meegid.2022.105290 (2022).

    Google Scholar 

  115. Boehm, U., Klamp, T., Groot, M. & Howard, J. Cellular responses to interferon-γ. Annu. Rev. Immunol. 15 (1), 749–795 (1997).

    Google Scholar 

  116. Liao, W., Lin, J. X. & Leonard, W. J. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr. Opin. Immunol. 23 (5), 598–604 (2011).

    Google Scholar 

  117. Sahu, L. K. & Singh, K. Cross-variant proof predictive vaccine design based on SARS-CoV-2 Spike protein using immunoinformatics approach. Beni-Suef Univ. J. Basic. Appl. Sci. 12 (1), 5 (2023).

    Google Scholar 

  118. Aiman, S. et al. Multi-epitope chimeric vaccine design against emerging Monkeypox virus via reverse vaccinology techniques-a bioinformatics and immunoinformatics approach. Front. Immunol. 13, 985450 (2022).

    Google Scholar 

  119. Rahmani, A. et al. Development of a conserved chimeric vaccine based on helper T-cell and CTL epitopes for induction of strong immune response against schistosoma mansoni using immunoinformatics approaches. Int. J. Biol. Macromol. 141, 125–136 (2019).

    Google Scholar 

  120. Park, J. S. et al. Comparison of nasal cytokine profiles of human metapneumovirus and respiratory syncytial virus. Asia Pac. Allergy. 7 (4), 206–212 (2017).

    Google Scholar 

  121. Alawadi, Z. I. et al. Designing a multiepitope mRNA-based vaccine against enterotoxigenic Escherichia coli infection in calves: immunoinformatics and molecular modeling approach. Open. Veterinary J. 14 (6), 1417 (2024).

    Google Scholar 

Download references