References
-
Wang, R. et al. The interaction of innate immune and adaptive immune system. Med. Comm. 5, e714 (2024).
-
Ko, K. H. et al. A novel defined TLR3 agonist as an effective vaccine adjuvant. Front Immunol. 14, 1075291 (2023).
-
Lee, S. H. et al. The defined TLR3 agonist, nexavant, exhibits anti-cancer efficacy and potentiates anti-PD-1 antibody Therapy By Enhancing Immune Cell Infiltration. Cancers (Basel) 15, 5752 (2023).
-
Ko, K. H. et al. A vaccine platform targeting lung-resident memory CD4(+) T-cells provides protection against heterosubtypic influenza infections in mice and ferrets. Nat. Commun. 15, 10368 (2024).
-
Jung, H. N., Lee, S. Y., Lee, S., Youn, H. & Im, H. J. Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of in vivo imaging. Theranostics 12, 7509–7531 (2022).
-
Wei, P. S. et al. Enhancing RNA-lipid nanoparticle delivery: Organ- and cell-specificity and barcoding strategies. J. Control Release 375, 366–388 (2024).
-
Lin, Y., Chen, X., Wang, K., Liang, L. & Zhang, H. An overview of nanoparticle-based delivery platforms for mRNA vaccines for treating cancer. Vaccines (Basel) 12, 727 (2024).
-
Zelkoski, A. E. et al. Ionizable lipid nanoparticles of mRNA vaccines elicit NF-kappaB and IRF responses through toll-like receptor 4. NPJ Vaccines 10, 73 (2025).
-
Alameh, M. G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892 e2877 (2021).
-
Schoenmaker, L. et al. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J. Pharm. 601, 120586 (2021).
-
Su, K. et al. Reformulating lipid nanoparticles for organ-targeted mRNA accumulation and translation. Nat. Commun. 15, 5659 (2024).
-
Ma, X. et al. Exploration of mRNA nanoparticles based on DOTAP through optimization of the helper lipids. Biotechnol. J. 18, e2300123 (2023).
-
Lanzavecchia, A. & Sallusto, F. Regulation of T cell immunity by dendritic cells. Cell 106, 263–266 (2001).
-
Liu, H. Y., Pedros, C., Kong, K. F., Canonigo-Balancio, A. J. & Altman, A. Protein Kinase C-eta Deficiency Does Not Impair Antiviral Immunity and CD8(+) T Cell Activation. J. Immunol. 204, 2439–2446 (2020).
-
Hailemichael, Y. et al. Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat. Med 19, 465–472 (2013).
-
Al-Omari, A. A. et al. Modi-2 a vaccine stimulating CD4 responses to homocitrullinated self epitopes as therapy for solid cancers. NPJ Vaccines 9, 236 (2024).
-
Stribbling, S. M., Beach, C. & Ryan, A. J. Orthotopic and metastatic tumour models in preclinical cancer research. Pharm. Ther. 257, 108631 (2024).
-
Cui, Z. & Qiu, F. Synthetic double-stranded RNA poly(I:C) as a potent peptide vaccine adjuvant: therapeutic activity against human cervical cancer in a rodent model. Cancer Immunol. Immunother. 55, 1267–1279 (2006).
-
Maynard, S. K. et al. Vaccination with synthetic long peptide formulated with CpG in an oil-in-water emulsion induces robust E7-specific CD8 T cell responses and TC-1 tumor eradication. BMC Cancer 19, 540 (2019).
-
Heo, Y. et al. L-pampo, a novel TLR2/3 agonist, acts as a potent cancer vaccine adjuvant by activating draining lymph node dendritic cells. Cancers (Basel) 15, 3978 (2023).
-
Mehrizi, A. A., Rezvani, N., Zakeri, S., Gholami, A. & Babaeekhou, L. Poly(I:C) adjuvant strongly enhances parasite-inhibitory antibodies and Th1 response against Plasmodium falciparum merozoite surface protein-1 (42-kDa fragment) in BALB/c mice. Med Microbiol Immunol. 207, 151–166 (2018).
-
Creech, C. B. et al. Evaluation of mRNA-1273 Covid-19 Vaccine in Children 6 to 11 Years of Age. N. Engl. J. Med 386, 2011–2023 (2022).
-
Yassini, P. et al. Interim analysis of a phase 1 randomized clinical trial on the safety and immunogenicity of the mRNA-1283 SARS-CoV-2 vaccine in adults. Hum. Vaccin Immunother. 19, 2190690 (2023).
-
Greenfield, W. W. et al. A phase I dose-escalation clinical trial of a peptide-based human papillomavirus therapeutic vaccine with Candida skin test reagent as a novel vaccine adjuvant for treating women with biopsy-proven cervical intraepithelial neoplasia 2/3. Oncoimmunology 4, e1031439 (2015).
-
Bender, A. et al. LUD 00-009: phase 1 study of intensive course immunization with NY-ESO-1 peptides in HLA-A2 positive patients with NY-ESO-1-expressing cancer. Cancer Immun. 7, 16 (2007).
-
Miyazawa, M. et al. Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer. Cancer Sci. 101, 433–439 (2010).
-
Jiang, S. et al. CRM197-conjugated multi antigen dominant epitope for effective human cytomegalovirus vaccine development. Int J. Biol. Macromol. 224, 79–93 (2023).
-
Nordin, M. L. et al. Peptide-based vaccine against breast cancer: recent advances and prospects. Pharmaceuticals (Basel) 16, 923 (2023).
-
Bloom, M. B. et al. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J. Exp. Med 185, 453–459 (1997).
-
Marabelle, A., Kohrt, H., Caux, C. & Levy, R. Intratumoral immunization: a new paradigm for cancer therapy. Clin. Cancer Res 20, 1747–1756 (2014).
-
Braun, D. A. et al. A neoantigen vaccine generates antitumour immunity in renal cell carcinoma. Nature 639, 474–482 (2025).
-
Epstein, J. E. et al. Live attenuated malaria vaccine designed to protect through hepatic CD8(+) T cell immunity. Science 334, 475–480 (2011).
-
Andersen, P. & Woodworth, J. S. Tuberculosis vaccines-rethinking the current paradigm. Trends Immunol. 35, 387–395 (2014).
-
Zajac, A. J., Murali-Krishna, K., Blattman, J. N. & Ahmed, R. Therapeutic vaccination against chronic viral infection: the importance of cooperation between CD4+ and CD8+ T cells. Curr. Opin. Immunol. 10, 444–449 (1998).
-
Ott, P. A. & Wu, C. J. Cancer Vaccines: Steering T Cells Down the Right Path to Eradicate Tumors. Cancer Discov. 9, 476–481 (2019).
-
Gainor, J. F. et al. T-cell Responses to Individualized Neoantigen Therapy mRNA-4157 (V940) Alone or in Combination with Pembrolizumab in the Phase 1 KEYNOTE-603 Study. Cancer Discov. 14, 2209–2223 (2024).
-
Weber, J. S. et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403, 632–644 (2024).
-
Yaremenko, A. V., Khan, M. M., Zhen, X., Tang, Y. & Tao, W. Clinical advances of mRNA vaccines for cancer immunotherapy. Med 6, 100562 (2025).
-
Micoli, F., Romano, M. R., Carboni, F., Adamo, R. & Berti, F. Strengths and weaknesses of pneumococcal conjugate vaccines. Glycoconj. J. 40, 135–148 (2023).
-
Du, H., Xu, T. & Cui, M. cGAS-STING signaling in cancer immunity and immunotherapy. Biomed. Pharmacother. 133, 110972 (2021).
-
Lamoot, A. et al. Lipid Nanoparticle Encapsulation Empowers Poly(I:C) to Activate Cytoplasmic RLRs and Thereby Increases Its Adjuvanticity. Small 20, e2306892 (2024).
-
Zhong, Z. et al. Lipid Nanoparticle Delivery Alters the Adjuvanticity of the TLR9 Agonist CpG by Innate Immune Activation in Lymphoid Tissue. Adv. Health. Mater. 12, e2301687 (2023).
-
Shirai, S. et al. Lipid Nanoparticles Potentiate CpG-Oligodeoxynucleotide-Based Vaccine for Influenza Virus. Front Immunol. 10, 3018 (2019).
-
Luan, N., Cao, H., Wang, Y., Lin, K. & Liu, C. LNP-CpG ODN-adjuvanted varicella-zoster virus glycoprotein E induced comparable levels of immunity with Shingrix in VZV-primed mice. Virol. Sin. 37, 731–739 (2022).
-
Chen, X. et al. Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy. Biomark. Res 12, 2 (2024).
-
Carrasco, M. J. et al. Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Commun. Biol. 4, 956 (2021).
