Lipid nanoparticle encapsulated TLR3 agonist adjuvant elicits potent T cell immunity against cancer and viruses

lipid-nanoparticle-encapsulated-tlr3-agonist-adjuvant-elicits-potent-t-cell-immunity-against-cancer-and-viruses
Lipid nanoparticle encapsulated TLR3 agonist adjuvant elicits potent T cell immunity against cancer and viruses

References

  1. Wang, R. et al. The interaction of innate immune and adaptive immune system. Med. Comm. 5, e714 (2024).

    Google Scholar 

  2. Ko, K. H. et al. A novel defined TLR3 agonist as an effective vaccine adjuvant. Front Immunol. 14, 1075291 (2023).

    Google Scholar 

  3. Lee, S. H. et al. The defined TLR3 agonist, nexavant, exhibits anti-cancer efficacy and potentiates anti-PD-1 antibody Therapy By Enhancing Immune Cell Infiltration. Cancers (Basel) 15, 5752 (2023).

    Google Scholar 

  4. Ko, K. H. et al. A vaccine platform targeting lung-resident memory CD4(+) T-cells provides protection against heterosubtypic influenza infections in mice and ferrets. Nat. Commun. 15, 10368 (2024).

    Google Scholar 

  5. Jung, H. N., Lee, S. Y., Lee, S., Youn, H. & Im, H. J. Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of in vivo imaging. Theranostics 12, 7509–7531 (2022).

    Google Scholar 

  6. Wei, P. S. et al. Enhancing RNA-lipid nanoparticle delivery: Organ- and cell-specificity and barcoding strategies. J. Control Release 375, 366–388 (2024).

    Google Scholar 

  7. Lin, Y., Chen, X., Wang, K., Liang, L. & Zhang, H. An overview of nanoparticle-based delivery platforms for mRNA vaccines for treating cancer. Vaccines (Basel) 12, 727 (2024).

    Google Scholar 

  8. Zelkoski, A. E. et al. Ionizable lipid nanoparticles of mRNA vaccines elicit NF-kappaB and IRF responses through toll-like receptor 4. NPJ Vaccines 10, 73 (2025).

    Google Scholar 

  9. Alameh, M. G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892 e2877 (2021).

    Google Scholar 

  10. Schoenmaker, L. et al. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J. Pharm. 601, 120586 (2021).

    Google Scholar 

  11. Su, K. et al. Reformulating lipid nanoparticles for organ-targeted mRNA accumulation and translation. Nat. Commun. 15, 5659 (2024).

    Google Scholar 

  12. Ma, X. et al. Exploration of mRNA nanoparticles based on DOTAP through optimization of the helper lipids. Biotechnol. J. 18, e2300123 (2023).

    Google Scholar 

  13. Lanzavecchia, A. & Sallusto, F. Regulation of T cell immunity by dendritic cells. Cell 106, 263–266 (2001).

    Google Scholar 

  14. Liu, H. Y., Pedros, C., Kong, K. F., Canonigo-Balancio, A. J. & Altman, A. Protein Kinase C-eta Deficiency Does Not Impair Antiviral Immunity and CD8(+) T Cell Activation. J. Immunol. 204, 2439–2446 (2020).

    Google Scholar 

  15. Hailemichael, Y. et al. Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat. Med 19, 465–472 (2013).

    Google Scholar 

  16. Al-Omari, A. A. et al. Modi-2 a vaccine stimulating CD4 responses to homocitrullinated self epitopes as therapy for solid cancers. NPJ Vaccines 9, 236 (2024).

    Google Scholar 

  17. Stribbling, S. M., Beach, C. & Ryan, A. J. Orthotopic and metastatic tumour models in preclinical cancer research. Pharm. Ther. 257, 108631 (2024).

    Google Scholar 

  18. Cui, Z. & Qiu, F. Synthetic double-stranded RNA poly(I:C) as a potent peptide vaccine adjuvant: therapeutic activity against human cervical cancer in a rodent model. Cancer Immunol. Immunother. 55, 1267–1279 (2006).

    Google Scholar 

  19. Maynard, S. K. et al. Vaccination with synthetic long peptide formulated with CpG in an oil-in-water emulsion induces robust E7-specific CD8 T cell responses and TC-1 tumor eradication. BMC Cancer 19, 540 (2019).

    Google Scholar 

  20. Heo, Y. et al. L-pampo, a novel TLR2/3 agonist, acts as a potent cancer vaccine adjuvant by activating draining lymph node dendritic cells. Cancers (Basel) 15, 3978 (2023).

    Google Scholar 

  21. Mehrizi, A. A., Rezvani, N., Zakeri, S., Gholami, A. & Babaeekhou, L. Poly(I:C) adjuvant strongly enhances parasite-inhibitory antibodies and Th1 response against Plasmodium falciparum merozoite surface protein-1 (42-kDa fragment) in BALB/c mice. Med Microbiol Immunol. 207, 151–166 (2018).

    Google Scholar 

  22. Creech, C. B. et al. Evaluation of mRNA-1273 Covid-19 Vaccine in Children 6 to 11 Years of Age. N. Engl. J. Med 386, 2011–2023 (2022).

    Google Scholar 

  23. Yassini, P. et al. Interim analysis of a phase 1 randomized clinical trial on the safety and immunogenicity of the mRNA-1283 SARS-CoV-2 vaccine in adults. Hum. Vaccin Immunother. 19, 2190690 (2023).

    Google Scholar 

  24. Greenfield, W. W. et al. A phase I dose-escalation clinical trial of a peptide-based human papillomavirus therapeutic vaccine with Candida skin test reagent as a novel vaccine adjuvant for treating women with biopsy-proven cervical intraepithelial neoplasia 2/3. Oncoimmunology 4, e1031439 (2015).

    Google Scholar 

  25. Bender, A. et al. LUD 00-009: phase 1 study of intensive course immunization with NY-ESO-1 peptides in HLA-A2 positive patients with NY-ESO-1-expressing cancer. Cancer Immun. 7, 16 (2007).

    Google Scholar 

  26. Miyazawa, M. et al. Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer. Cancer Sci. 101, 433–439 (2010).

    Google Scholar 

  27. Jiang, S. et al. CRM197-conjugated multi antigen dominant epitope for effective human cytomegalovirus vaccine development. Int J. Biol. Macromol. 224, 79–93 (2023).

    Google Scholar 

  28. Nordin, M. L. et al. Peptide-based vaccine against breast cancer: recent advances and prospects. Pharmaceuticals (Basel) 16, 923 (2023).

    Google Scholar 

  29. Bloom, M. B. et al. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J. Exp. Med 185, 453–459 (1997).

    Google Scholar 

  30. Marabelle, A., Kohrt, H., Caux, C. & Levy, R. Intratumoral immunization: a new paradigm for cancer therapy. Clin. Cancer Res 20, 1747–1756 (2014).

    Google Scholar 

  31. Braun, D. A. et al. A neoantigen vaccine generates antitumour immunity in renal cell carcinoma. Nature 639, 474–482 (2025).

    Google Scholar 

  32. Epstein, J. E. et al. Live attenuated malaria vaccine designed to protect through hepatic CD8(+) T cell immunity. Science 334, 475–480 (2011).

    Google Scholar 

  33. Andersen, P. & Woodworth, J. S. Tuberculosis vaccines-rethinking the current paradigm. Trends Immunol. 35, 387–395 (2014).

    Google Scholar 

  34. Zajac, A. J., Murali-Krishna, K., Blattman, J. N. & Ahmed, R. Therapeutic vaccination against chronic viral infection: the importance of cooperation between CD4+ and CD8+ T cells. Curr. Opin. Immunol. 10, 444–449 (1998).

    Google Scholar 

  35. Ott, P. A. & Wu, C. J. Cancer Vaccines: Steering T Cells Down the Right Path to Eradicate Tumors. Cancer Discov. 9, 476–481 (2019).

    Google Scholar 

  36. Gainor, J. F. et al. T-cell Responses to Individualized Neoantigen Therapy mRNA-4157 (V940) Alone or in Combination with Pembrolizumab in the Phase 1 KEYNOTE-603 Study. Cancer Discov. 14, 2209–2223 (2024).

    Google Scholar 

  37. Weber, J. S. et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403, 632–644 (2024).

    Google Scholar 

  38. Yaremenko, A. V., Khan, M. M., Zhen, X., Tang, Y. & Tao, W. Clinical advances of mRNA vaccines for cancer immunotherapy. Med 6, 100562 (2025).

    Google Scholar 

  39. Micoli, F., Romano, M. R., Carboni, F., Adamo, R. & Berti, F. Strengths and weaknesses of pneumococcal conjugate vaccines. Glycoconj. J. 40, 135–148 (2023).

    Google Scholar 

  40. Du, H., Xu, T. & Cui, M. cGAS-STING signaling in cancer immunity and immunotherapy. Biomed. Pharmacother. 133, 110972 (2021).

    Google Scholar 

  41. Lamoot, A. et al. Lipid Nanoparticle Encapsulation Empowers Poly(I:C) to Activate Cytoplasmic RLRs and Thereby Increases Its Adjuvanticity. Small 20, e2306892 (2024).

    Google Scholar 

  42. Zhong, Z. et al. Lipid Nanoparticle Delivery Alters the Adjuvanticity of the TLR9 Agonist CpG by Innate Immune Activation in Lymphoid Tissue. Adv. Health. Mater. 12, e2301687 (2023).

    Google Scholar 

  43. Shirai, S. et al. Lipid Nanoparticles Potentiate CpG-Oligodeoxynucleotide-Based Vaccine for Influenza Virus. Front Immunol. 10, 3018 (2019).

    Google Scholar 

  44. Luan, N., Cao, H., Wang, Y., Lin, K. & Liu, C. LNP-CpG ODN-adjuvanted varicella-zoster virus glycoprotein E induced comparable levels of immunity with Shingrix in VZV-primed mice. Virol. Sin. 37, 731–739 (2022).

    Google Scholar 

  45. Chen, X. et al. Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy. Biomark. Res 12, 2 (2024).

    Google Scholar 

  46. Carrasco, M. J. et al. Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Commun. Biol. 4, 956 (2021).

    Google Scholar 

Download references