Zurriaga Carda, J. et al. Articular cartilage regeneration with a microgel as a support biomaterial. A rabbit knee model. Biomaterials Adv. 168, 214125 (2025).
Pueyo Moliner, A. et al. Restoring articular cartilage: insights from structure, composition and development. Nat. Rev. Rheumatol. 21 (5), 291–308 (2025).
Zhou, J. et al. An effective approach to cartilage regeneration using antler stem cell-conditioned medium. Sci. Rep. 15 (1), 27971 (2025).
Kalairaj, M. S. et al. Intra-articular injectable biomaterials for cartilage repair and regeneration. Adv. Healthc. Mater. 13 (17), 2303794 (2024).
Li, H. et al. Cartilage lacuna-biomimetic hydrogel microspheres endowed with integrated biological signal boost endogenous articular cartilage regeneration. Bioactive Mater. 41, 61–82 (2024).
Li, C. S. et al. Ultramodern natural and synthetic polymer hydrogel scaffolds for articular cartilage repair and regeneration. Biomed. Eng. Online. 24 (1), 1–26 (2025).
Yang, Y. et al. Developmental dynamics mimicking inversely engineered pericellular matrix for articular cartilage regeneration. Biomaterials 317, 123066 (2025).
Wang, C. et al. Injectable tissue-engineered human cartilage matrix composite fibrin glue for regeneration of articular cartilage defects. Biomaterials Adv. 167, 214095 (2025).
Bordbar, S. et al. Cartilage tissue engineering using decellularized biomatrix hydrogel containing TGF-β-loaded alginate microspheres in mechanically loaded bioreactor. Sci. Rep. 14 (1), 11991 (2024).
Hashemi-Afzal, F. et al. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioactive Mater. 43, 1–31 (2025).
Kang, Y., Guan, Y. & Li, S. Innovative hydrogel solutions for articular cartilage regeneration: a comprehensive review. Int. J. Surg. 110 (12), 7984–8001 (2024).
Zhang, H. et al. Monophasic hyaluronic acid-silica hybrid hydrogels for articular cartilage applications. Biomaterials Adv. 167, 214089 (2025).
Lin, L. et al. Alkaline phosphatase-instructed self-assembling supramolecular glucosamine hydrogel for osteoarthritis treatment. Biomaterials Adv. 178, 214451 (2026).
He, S. et al. Construction of a dual-component hydrogel matrix for 3D biomimetic skin based on photo-crosslinked chondroitin sulfate/collagen. Int. J. Biol. Macromol. 254, 127940 (2024).
Xue, H. et al. Polydopamine-coated chondroitin sulfate methacryloyl multifunctional microspheres for wound treatment. Int. J. Biol. Macromol. 280, 136087 (2024).
Murphy, C. A., Serafin, A. & Collins, M. N. Development of 3D printable gelatin methacryloyl/chondroitin sulfate/hyaluronic acid hydrogels as implantable scaffolds. Polymers, 16(14), 1958 (2024).
Mistretta, K. S. et al. Local sustained Dinutuximab delivery and release from methacrylated chondroitin sulfate. J. Biomedical Mater. Res. Part. A. 113 (1), e37803 (2025).
Xu, W. et al. Engineered Biomechanical microenvironment of articular chondrocytes based on heterogeneous GelMA hydrogel composites and dynamic mechanical compression. Biomaterials Adv. 153, 213567 (2023).
Klara, J. et al. Photocrosslinked gelatin/chondroitin sulfate/chitosan-based composites with tunable multifunctionality for bone tissue regeneration. Int. J. Biol. Macromol. 271, 132675 (2024).
Chen, R. et al. Facile synthesis of mechanically robust and injectable tetra-polyethylene glycol/methacrylate Chitosan double-network hydrogel cartilage repair. Polym. Test. 133, 108410 (2024).
Golebiowska, A. A. et al. Engineered osteochondral scaffolds with bioactive cartilage zone for enhanced articular cartilage regeneration. Ann. Biomed. Eng. 53 (3), 597–611 (2025).
Hu, J. et al. Zonal characteristics of collagen ultrastructure and responses to mechanical loading in articular cartilage. Acta Biomater. 195, 104–116 (2025).
Taghizadeh, S. et al. Magnetic hydrogel applications in articular cartilage tissue engineering. J. Biomedical Mater. Res. Part. A. 112 (2), 260–275 (2024).
Wu, Y. et al. Improved articular cartilage repair with stratified zonal chondrocyte implantation. Am. J. Sports Med. 53 (9), 2094–2106 (2024).
Li, G. et al. Key roles of the superficial zone in articular cartilage physiology, pathology, and regeneration. Chin. Med. J. 138 (12), 1399–1410 (2025).
Cao, F., Li, P. & Guo, L. Bibliometric and visualization analysis of superficial zone of articular cartilage from 2000 to 2024. Osteoarthr. Cartil. 33 (6), 777 (2025).
Ye, T. et al. Lysosomal destabilization: a missing link between pathological calcification and osteoarthritis. Bioactive Mater. 34, 37–50 (2024).
Wu, X. et al. A 3D printed multilayer biomimetic scaffold with a gradient-oriented structure for articular cartilage repair. J. Mater.Chem. B. 13, 7728–7743 (2025).
Silva, B. et al. Toward integrative Biomechanical models of osteochondral tissues: A multilayered perspective. Bioengineering 12 (6), 649 (2025).
Nikhil, A. et al. Multilayered cryogel enriched with exosomes regenerates and maintains cartilage architecture and phenotype in goat osteochondral injuries. ACS Appl. Mater. Interfaces. 16 (47), 64505–64521 (2024).
Moradian, A. et al. Photo- and thermal-crosslinked GelMA/chitosan hydrogels: A novel approach to enhanced mechanical and biological properties. Carbohydr. Polym. Technol. Appl. 10, 100834 (2025).
Raikov, B. et al. Methods for determining the molecular composition of knee joint structures in osteoarthritis: collagen, proteoglycans and water content: a systematic review. Collagen Leather. 6 (1), 30 (2024).
Çelik, E. et al. Calcified and mechanically debilitated three-dimensional hydrogel environment induces hypertrophic trend in chondrocytes. J. Bioactive Compatible Polym. 31 (5), 498–512 (2016).
Peters, J. R. et al. Tissue growth as a mechanism for collagen fiber alignment in articular cartilage. Sci. Rep. 14 (1), 31121 (2024).
Singh, J. et al. Biomimetic double network hydrogels of chondroitin sulfate and synthetic polypeptides for cartilage tissue engineering. Biomaterials Sci. 13, 4211–4231 (2025).
Park, S. et al. Polydeoxynucleotide-loaded visible light photo-crosslinked gelatin methacrylate hydrogel: approach to accelerating cartilage regeneration. Gels 11 (1), 42 (2025).
Yu, J. et al. Versatile chondroitin sulfate-based nanoplatform for chemo-photodynamic therapy against triple-negative breast cancer. Int. J. Biol. Macromol. 265, 130709 (2024).
Fowler, M. et al. Guiding vascular infiltration through architected GelMA/PEGDA hydrogels: an in vivo study of channel diameter, length, and complexity. Biomaterials Sci. 13 (11), 2951–2960 (2025).
Golini, C. et al. Depth-wise multiparametric assessment of articular cartilage layers with single‐sided NMR. NMR Biomed. 38 (1), e5287 (2025).
Beck, E. C. et al. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Acta Biomater. 38, 94–105 (2016).
Gorroñogoitia, I. et al. The effect of Alginate/Hyaluronic acid proportion on Semi-Interpenetrating hydrogel properties for articular cartilage tissue engineering. Polymers 17 (4), 528 (2025).
Liang, J. et al. Hybrid hydrogels based on Methacrylate-Functionalized gelatin (GelMA) and synthetic polymers. Biomedical Mater. Devices. 1 (1), 191–201 (2023).
Rodrigues, L. C. et al. 3D tubular constructs based on natural polysaccharides and Recombinant polypeptide synergistic blends as potential candidates for blood vessel solutions. Int. J. Biol. Macromol. 310, 143084 (2025).
Dabaja, R. et al. Spatially distributed and interconnected porous architectures for dental implants. Int. J. Implant Dentistry. 11 (1), 30 (2025).
Salehi, M. et al. Achieving biomimetic porosity and strength of bone in magnesium scaffolds through binder jet additive manufacturing. Biomaterials Adv. 166, 214059 (2025).
Mukasheva, F. et al. Optimizing scaffold pore size for tissue engineering: Insights across various tissue types. Front. Bioeng. Biotechnol. 12, 1444986 (2024).
Chonanant, C. et al. Biocomposite scaffolds based on Chitosan extraction from shrimp shell waste for cartilage tissue engineering application. ACS Omega. 9 (38), 39419–39429 (2024).
Welsh, B. L. & Sikder, P. Advancements in cartilage tissue engineering: A focused review. J. Biomedical Mater. Res. Part. B: Appl. Biomaterials. 113 (1), e35520 (2025).
Gonella, S. et al. Fabrication and characterization of porous PEGDA hydrogels for articular cartilage regeneration. Gels 10 (7), 422 (2024).
Kurian, A. G. et al. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioactive Mater. 8, 267–295 (2022).
Wang, H. et al. Comparing the effect of mechanical loading on deep and superficial cartilage using quantitative Ute mri. J. Magn. Reson. Imaging. 59 (6), 2048–2057 (2024).
Choi, H., Choi, W. S. & Jeong, J. O. A review of advanced hydrogel applications for tissue engineering and drug delivery systems as biomaterials. Gels 10 (11), 693 (2024).
Mow, V. C., Ratcliffe, A. & Robin Poole, A. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13 (2), 67–97 (1992).
Dong, D. L. & Jin, G. Z. Targeting chondrocyte hypertrophy as strategies for the treatment of osteoarthritis. Bioengineering 12 (1), 77 (2025).
Pan, X. et al. Biomimetic vascular scaffolds via hybrid 3D printing-phase separation for vascularized cardiac tissue with enhanced perfusion and maturation. Biomaterials Sci. 13 (17), 4803–4815 (2025).
Cai, H. et al. Vascular network-inspired diffusible scaffolds for engineering functional midbrain organoids. Cell. Stem Cell. 32 (5), 824–837 (2025). e5.
Hudson, A. R. et al. Enhancing viability in static and perfused 3D tissue constructs using sacrificial gelatin microparticles. ACS Biomaterials Sci. Eng. 11 (5), 2888–2897 (2025).
Owida, H. A. et al. Induction of zonal-specific cellular morphology and matrix synthesis for biomimetic cartilage regeneration using hybrid scaffolds. J. Royal Soc. Interface. 15 (143), 20180310 (2018).
Ghadirian, S., Shariati, L. & Karbasi, S. Evaluation of the effects of cartilage decellularized ECM in optimizing PHB-chitosan-HNT/chitosan-ECM core-shell electrospun scaffold: physicochemical and biological properties. Biomaterials Adv. 172, 214249 (2025).
Amanatullah, D. F., Yamane, S. & Reddi, A. H. Distinct patterns of gene expression in the superficial, middle and deep zones of bovine articular cartilage. J. Tissue Eng. Regen. Med. 8 (7), 505–514 (2014).
Liu, Y. et al. Bioprinted biomimetic hydrogel matrices guiding stem cell aggregates for enhanced chondrogenesis and cartilage regeneration. J. Mater. Chem. B. 12 (22), 5360–5376 (2024).
Zheng, K. et al. Co-culture pellet of human wharton’s jelly mesenchymal stem cells and rat costal chondrocytes as a candidate for articular cartilage regeneration: in vitro and in vivo study. Stem Cell Res. Ther. 13 (1), 386 (2022).
Zhang, L. et al. Multileveled hierarchical hydrogel with continuous biophysical and biochemical gradients for enhanced repair of full-thickness osteochondral defect. Adv. Mater. 35 (19), 2209565 (2023).
Wu, J. et al. Regional-specific meniscal extracellular matrix hydrogels and their effects on cell-matrix interactions of fibrochondrocytes. Biomed. Mater. 17 (1), 014105 (2021).
Decarli, M. C. et al. Bioprinting of stem cell spheroids followed by post-printing chondrogenic differentiation for cartilage tissue engineering. Adv. Healthc. Mater. 12 (19), 2203021 (2023).
