Gut plasma membrane proteomes of adults and larvae of the European honey bee, Apis mellifera

gut-plasma-membrane-proteomes-of-adults-and-larvae-of-the-european-honey-bee,-apis-mellifera
Gut plasma membrane proteomes of adults and larvae of the European honey bee, Apis mellifera

References

  1. Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: Trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7, e37235 (2012).

    Google Scholar 

  2. Requier, F. et al. Bee and non-bee pollinator importance for local food security. Trends Ecol. Evol. 38, 196–205 (2023).

    Google Scholar 

  3. Lukic, B. et al. Genomic diversity and population structure of Carniolan honey bee in its native habitat. BMC Genomics 25, 849 (2024).

    Google Scholar 

  4. Papa, G. et al. The honey bee Apis mellifera: An insect at the interface between human and ecosystem health. Biology 11, 233 (2022).

    Google Scholar 

  5. O’Sullivan, J. N. Demographic delusions: World population growth is exceeding most projections and jeopardising scenarios for sustainable futures. World 4, 545–568 (2023).

    Google Scholar 

  6. Vu, E. D., Chiavini, B. E., Gratton, E. M., Dolezal, A. G. & Bonning, B. C. Representative honey bee viruses do not replicate in the small hive beetle, Aethina tumida Murray. J. Invertebr. Pathol. 207, 108207 (2024).

    Google Scholar 

  7. Venu, H. S. et al. Bioefficacy and molecular characterization of Bacillus thuringiensis strain NBAIR BtGa against greater wax moth, Galleria mellonella L.. Braz. J. Microbiol. 55, 4009–4017 (2024).

    Google Scholar 

  8. Farruggia, F. T. et al. A retrospective analysis of honey bee (Apis mellifera) pesticide toxicity data. PLoS ONE 17, e0265962 (2022).

    Google Scholar 

  9. Iredale, M. E. et al. Development of a multiplex real-time quantitative reverse-transcription polymerase chain reaction for the detection of four bee viruses. J. Virol. Methods 328, 114953 (2024).

    Google Scholar 

  10. Miller, D. L., Smith, E. A. & Newton, I. L. G. A bacterial symbiont protects honey bees from fungal disease. MBio 12, e00503-e521 (2021).

    Google Scholar 

  11. Ye, M., Li, X., Yang, F. & Zhou, B. Beneficial bacteria as biocontrol agents for American foulbrood disease in honey bees (Apis mellifera ). J. Insect Sci. 23, 6 (2023).

    Google Scholar 

  12. Zhao, H. et al. Review on effects of some insecticides on honey bee health. Pestic. Biochem. Physiol. 188, 105219 (2022).

    Google Scholar 

  13. Araújo, M. F., Castanheira, E. M. S. & Sousa, S. F. The buzz on insecticides: A review of uses, molecular structures, targets, adverse effects, and alternatives. Molecules 28, 3641 (2023).

    Google Scholar 

  14. Badawy, M. E. I., Nasr, H. M. & Rabea, E. I. Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie 46, 177–193 (2015).

    Google Scholar 

  15. Barathi, S., Sabapathi, N., Kandasamy, S. & Lee, J. Present status of insecticide impacts and eco-friendly approaches for remediation-a review. Environ. Res. 240, 117432 (2024).

    Google Scholar 

  16. Belzunces, L. P., Tchamitchian, S. & Brunet, J.-L. Neural effects of insecticides in the honey bee. Apidologie 43, 348–370 (2012).

    Google Scholar 

  17. Halm, M.-P., Rortais, A., Arnold, G., Taséi, J. N. & Rault, S. New risk assessment approach for systemic insecticides: The case of honey bees and imidacloprid (Gaucho). Environ. Sci. Technol. 40, 2448–2454 (2006).

    Google Scholar 

  18. Hladik, M. L., Main, A. R. & Goulson, D. Environmental risks and challenges associated with neonicotinoid insecticides. Environ. Sci. Technol. 52, 3329–3335 (2018).

    Google Scholar 

  19. Laurino, D., Porporato, M., Patetta, A., Manino, A. & Va, D. Toxicity of neonicotinoid insecticides to honey bees: Laboratory tests. Bull. Insectol. 64, 107–113 (2011).

    Google Scholar 

  20. Rezende-Teixeira, P., Dusi, R. G., Jimenez, P. C., Espindola, L. S. & Costa-Lotufo, L. V. What can we learn from commercial insecticides? Efficacy, toxicity, environmental impacts, and future developments. Environ. Pollut. 300, 118983 (2022).

    Google Scholar 

  21. Koch, M. S. et al. The food and environmental safety of Bt crops. Front. Plant Sci. 6, 283 (2015).

    Google Scholar 

  22. Roh, J.-Y., Choi, J.-Y., Li, M.-S., Jin, B.-R. & Je, Y.-H. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17, 547–559 (2007).

    Google Scholar 

  23. Hayakawa, T., Shitomi, Y., Miyamoto, K. & Hori, H. GalNAc pretreatment inhibits trapping of Bacillus thuringiensis Cry1Ac on the peritrophic membrane of Bombyx mori. FEBS Lett. 576, 331–335 (2004).

    Google Scholar 

  24. Jurat-Fuentes, J. L., Heckel, D. G. & Ferré, J. Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis. Annu. Rev. Entomol. 66, 121–140 (2021).

    Google Scholar 

  25. Mishra, R. et al. Bacteria-derived pesticidal proteins active against hemipteran pests. J. Invertebr. Pathol. 195, 107834 (2022).

    Google Scholar 

  26. Banerjee, R. et al. Peptide mediated, enhanced toxicity of a bacterial pesticidal protein against southern green stink bug. Microb. Biotechnol. 15, 2071–2082 (2022).

    Google Scholar 

  27. Bravo, A., Likitvivatanavong, S., Gill, S. S. & Soberón, M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423–431 (2011).

    Google Scholar 

  28. Berry, C. et al. Specificity database for bacterial pesticidal proteins against invertebrate targets. J. Invertebr. Pathol. 211, 108319 (2025).

    Google Scholar 

  29. Duan, J. J., Marvier, M., Huesing, J., Dively, G. & Huang, Z. Y. A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS ONE 3, e1415 (2008).

    Google Scholar 

  30. Hendriksma, H. P., Härtel, S., Babendreier, D., von der Ohe, W. & Steffan-Dewenter, I. Effects of multiple Bt proteins and GNA lectin on in vitro-reared honey bee larvae. Apidologie 43, 549–560 (2012).

    Google Scholar 

  31. Niu, L., Ma, W., Lei, C., Jurat-Fuentes, J. L. & Chen, L. Herbicide and insect resistant Bt cotton pollen assessment finds no detrimental effects on adult honey bees. Environ. Pollut. 230, 479–485 (2017).

    Google Scholar 

  32. Potrich, M. et al. Effect of entomopathogens on Africanized Apis mellifera L. (Hymenoptera: Apidae). Rev. Bras. Entomol. 62, 23–28 (2018).

    Google Scholar 

  33. Ramirez-Romero, R., Desneux, N., Decourtye, A., Chaffiol, A. & Pham-Delègue, M. H. Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)?. Ecotoxicol. Environ. Saf. 70, 327–333 (2008).

    Google Scholar 

  34. Ramirez-Romero, R., Chaufaux, J. & Pham-Delègue, M.-H. Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performancesof the honeybee Apis mellifera, a comparative approach. Apidologie 36, 601–611 (2005).

    Google Scholar 

  35. Caccia, S., Casartelli, M. & Tettamanti, G. The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell Tissue Res. 377, 505–525 (2019).

    Google Scholar 

  36. De Sousa, G. & Conte, H. Midgut morphophysiology in Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae). Micron 51, 1–8 (2013).

    Google Scholar 

  37. Bonning, B. C. Pathogen Binding and Entry: Molecular Interactions with the Insect Gut. Annu. Rev. Entomol. 70, 165–184 (2025).

    Google Scholar 

  38. Jiménez, J., Mishra, R., Wang, X., Magee, C. M. & Bonning, B. C. Composition and abundance of midgut plasma membrane proteins in two major hemipteran vectors of plant viruses, Bemisia tabaci and Myzus persicae. Arch. Insect Biochem. Physiol. 116, e22133 (2024).

    Google Scholar 

  39. Tavares, C. S., Mishra, R., Ghobrial, P. N. & Bonning, B. C. Composition and abundance of midgut surface proteins in the Asian citrus psyllid. Diaphorina citri. J. Proteomics 261, 104580 (2022).

    Google Scholar 

  40. Bayyareddy, K., Zhu, X., Orlando, R. & Adang, M. J. Proteome Analysis of Cry4Ba Toxin-interacting Aedes aegypti Lipid Rafts using geLC–MS/MS. J. Proteome Res. 11, 5843–5855 (2012).

    Google Scholar 

  41. Javed, M. A., Coutu, C., Theilmann, D. A., Erlandson, M. A. & Hegedus, D. D. Proteomics analysis of Trichoplusia ni midgut epithelial cell brush border membrane vesicles. Insect Sci. 26, 424–440 (2019).

    Google Scholar 

  42. Valero-Rello, A., Baeza-Delgado, C., Andreu-Moreno, I. & Sanjuán, R. Cellular receptors for mammalian viruses. PLOS Pathog. 20, e1012021 (2024).

    Google Scholar 

  43. Cardoen, D. et al. Differential proteomics in dequeened honeybee colonies reveals lower viral load in hemolymph of fertile worker bees. PLoS ONE 6, e20043 (2011).

    Google Scholar 

  44. Cardoen, D. et al. Worker Honeybee Sterility: A Proteomic Analysis of Suppressed Ovary Activation. J. Proteome Res. 11, 2838–2850 (2012).

    Google Scholar 

  45. Hernández, L. G. et al. Worker Honeybee Brain Proteome. J. Proteome Res. 11, 1485–1493 (2012).

    Google Scholar 

  46. Wolschin, F., Shpigler, H., Amdam, G. V. & Bloch, G. Size-related variation in protein abundance in the brain and abdominal tissue of bumble bee workers. Insect Mol. Biol. 21, 319–325 (2012).

    Google Scholar 

  47. Chan, Q. W. T. et al. The Worker Honeybee Fat Body Proteome Is Extensively Remodeled Preceding a Major Life-History Transition. PLoS ONE 6, e24794 (2011).

    Google Scholar 

  48. Houdelet, C. et al. Proteomics of Anatomical Sections of the Gut of Nosema-Infected Western Honeybee (Apis mellifera) Reveals Different Early Responses to Nosema spp. Isolates. J. Proteome Res. 20, 804–817 (2021).

    Google Scholar 

  49. Erban, T., Sopko, B., Kadlikova, K., Talacko, P. & Harant, K. Varroa destructor parasitism has a greater effect on proteome changes than the deformed wing virus and activates TGF-β signaling pathways. Sci. Rep. 9, 9400 (2019).

    Google Scholar 

  50. Kurze, C. et al. Differential proteomics reveals novel insights into Nosema–honey bee interactions. Insect Biochem. Mol. Biol. 79, 42–49 (2016).

    Google Scholar 

  51. Michaud, S. et al. Response of the honey bee (Apis mellifera) proteome to Israeli acute paralysis virus (IAPV) infection. Can. J. Zool. 93, 711–720 (2014).

    Google Scholar 

  52. Zhang, Y., Zhang, G., Huang, X. & Han, R. Proteomic Analysis of Apis cerana and Apis mellifera Larvae Fed with Heterospecific Royal Jelly and by CSBV Challenge. PLoS ONE 9, e102663 (2014).

    Google Scholar 

  53. Pardo-López, L., Soberón, M. & Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 37, 3–22 (2013).

    Google Scholar 

  54. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Google Scholar 

  55. Zybailov, B. et al. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res. 5, 2339–2347 (2006).

    Google Scholar 

  56. EPA. Pollinator Risk Assessment Guidance. https://www.epa.gov/pollinator-protection/pollinator-risk-assessment-guidance (2014).

  57. OECD. Test No. 213: Honeybees, Acute Oral Toxicity Test. https://doi.org/10.1787/9789264070165-en (1998).

  58. Sato, R. Utilization of Diverse Molecules as Receptors by Cry Toxin and the Promiscuous Nature of Receptor-Binding Sites Which Accounts for the Diversity. Biomolecules 14, 425 (2024).

    Google Scholar 

  59. Ricroch, A., Akkoyunlu, S., Martin-Laffon, J. & Kuntz, M. Assessing the environmental safety of transgenic plants: Honey bees as a case study. In Advances in Botanical Research vol. 86 111–167 (Elsevier, 2018).

  60. Gassmann, A. J. & Reisig, D. D. Management of insect pests with Bt crops in the United States. Annu. Rev. Entomol. 68, 31–49 (2023).

    Google Scholar 

  61. Wang, Y. et al. Ingestion of Bt rice pollen does not reduce the survival or hypopharyngeal gland development of Apis mellifera adults. Environ. Toxicol. Chem. 36, 1243–1248 (2017).

    Google Scholar 

  62. Han, P., Niu, C.-Y., Biondi, A. & Desneux, N. Does transgenic Cry1Ac + CpTI cotton pollen affect hypopharyngeal gland development and midgut proteolytic enzyme activity in the honey bee Apis mellifera L. (Hymenoptera, Apidae)?. Ecotoxicology 21, 2214–2221 (2012).

    Google Scholar 

  63. Han, P., Niu, C.-Y., Lei, C.-L., Cui, J.-J. & Desneux, N. Quantification of toxins in a Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L.. Ecotoxicology 19, 1452–1459 (2010).

    Google Scholar 

  64. Wang, Y. et al. Toxicological, biochemical, and histopathological analyses demonstrating that Cry1C and Cry2A are not toxic to larvae of the honeybee, Apis mellifera. J. Agric. Food Chem. 63, 6126–6132 (2015).

    Google Scholar 

  65. Motta, E. V. S. & Moran, N. A. The honeybee microbiota and its impact on health and disease. Nat. Rev. Microbiol. 22, 122 (2023).

    Google Scholar 

  66. Dai, P. et al. The effect of Bt Cry9Ee toxin on honey bee brood and adults reared in vitro, Apis mellifera (Hymenoptera: Apidae). Ecotoxicol. Environ. Saf. 181, 381–387 (2019).

    Google Scholar 

  67. Hendriksma, H. P. et al. Effect of stacked insecticidal cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria. PLoS ONE 8, e59589 (2013).

    Google Scholar 

  68. Jia, H.-R. et al. The effects of Bt Cry1Ie toxin on bacterial diversity in the midgut of Apis mellifera ligustica (Hymenoptera: Apidae). Sci. Rep. 6, 24664 (2016).

    Google Scholar 

  69. Han, B. et al. Greater wax moth control in apiaries can be improved by combining Bacillus thuringiensis and entrapments. Nat. Commun. 14, 7073 (2023).

    Google Scholar 

  70. EPA. Reregistration Eligibility Decision (RED) Bacillus thuringiensis. https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_PC-006400_30-Mar-98.pdf (1998).

  71. EPA. First beehive uses of the currently registered active ingredient Bacillus thuringiensis, subsp. aizawai strain ABTS 1857. https://www.epa.gov/pesticides/first-beehive-uses-currently-registered-active-ingredient-bacillus-thuringiensis-subsp (2020).

  72. EPA. EPA proposes registration of new wax moth control. American Bee Journal (2020).

  73. Bravo, A., Gill, S. S. & Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49, 423–435 (2007).

    Google Scholar 

  74. Pigott, C. R. & Ellar, D. J. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev. 71, 255–281 (2007).

    Google Scholar 

  75. Adegawa, S. et al. Cry toxins use multiple ATP-binding cassette transporter subfamily C members as low-efficiency receptors in Bombyx mori. Biomolecules 14, 271 (2024).

    Google Scholar 

  76. Heckel, D. G. The essential and enigmatic role of ABC transporters in Bt resistance of noctuids and other insect pests of agriculture. Insects 12, 389 (2021).

    Google Scholar 

  77. Dermauw, W. & Van Leeuwen, T. The ABC gene family in arthropods: Comparative genomics and role in insecticide transport and resistance. Insect Biochem. Mol. Biol. 45, 89–110 (2014).

    Google Scholar 

  78. Caccia, S. et al. Association of Cry1Ac toxin resistance in Helicoverpa zea (Boddie) with increased alkaline phosphatase levels in the midgut lumen. Appl. Environ. Microbiol. 78, 5690–5698 (2012).

    Google Scholar 

  79. Herrero, S., Gechev, T., Bakker, P. L., Moar, W. J. & de Maagd, R. A. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. BMC Genomics 6, 96 (2005).

    Google Scholar 

  80. Zhang, S. et al. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochem. Mol. Biol. 39, 421–429 (2009).

    Google Scholar 

  81. Fabrick, J. A. et al. Reduced cadherin expression associated with resistance to Bt toxin Cry1Ac in pink bollworm. Pest Manag. Sci. 76, 67–74 (2020).

    Google Scholar 

  82. Morin, S. et al. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc. Natl. Acad. Sci. 100, 5004–5009 (2003).

    Google Scholar 

  83. Guo, Z. et al. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth. PLoS Genet. 11, e1005124 (2015).

    Google Scholar 

  84. Wolfersberger, M. et al. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp. Biochem. Physiol. A Physiol. 86, 301–308 (1987).

    Google Scholar 

  85. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Google Scholar 

  86. Doellinger, J., Schneider, A., Hoeller, M. & Lasch, P. Sample preparation by easy extraction and digestion (SPEED)—A universal, rapid, and detergent-free protocol for proteomics based on acid extraction. Mol. Cell. Proteomics MCP 19, 209–222 (2020).

    Google Scholar 

  87. Savojardo, C., Martelli, P. L., Fariselli, P., Profiti, G. & Casadio, R. BUSCA: An integrative web server to predict subcellular localization of proteins. Nucleic Acids Res. 46, W459–W466 (2018).

    Google Scholar 

  88. Armenteros, J. J. A., Sønderby, C. K., Sønderby, S. K., Nielsen, H. & Winther, O. DeepLoc: Prediction of protein subcellular localization using deep learning. Bioinformatics 33, 3387–3395 (2017).

    Google Scholar 

  89. Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Google Scholar 

  90. Huerta-Cepas, J. et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    Google Scholar 

  91. Käll, L., Krogh, A. & Sonnhammer, E. L. L. Advantages of combined transmembrane topology and signal peptide prediction—The Phobius web server. Nucleic Acids Res. 35, W429–W432 (2007).

    Google Scholar 

  92. Gíslason, M. H., Nielsen, H., Almagro Armenteros, J. J. & Johansen, A. R. Prediction of GPI-anchored proteins with pointer neural networks. Curr. Res. Biotechnol. 3, 6–13 (2021).

    Google Scholar 

  93. Bairoch, A. et al. The Universal Protein Resource (UniProt). Nucleic Acids Res. 33, D154-159 (2005).

    Google Scholar 

  94. Wu, C. H. et al. The Universal Protein Resource (UniProt): An expanding universe of protein information. Nucleic Acids Res. 34, D187–D191 (2006).

    Google Scholar 

  95. Thurmond, J. et al. FlyBase 2.0: The next generation. Nucleic Acids Res. 47, D759–D765 (2019).

    Google Scholar 

  96. Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Google Scholar 

  97. Charif, D. & Lobry, J. R. SeqinR 10–2: A contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In Structural Approaches to Sequence Evolution: Molecules, Networks, Populations (eds Bastolla, U. et al.) 207–232 (Springer, Berlin Heidelberg, 2007). https://doi.org/10.1007/978-3-540-35306-5_10.

    Google Scholar 

  98. Fomitcheva-Khartchenko, A., Rapsomaniki, M. A., Sobottka, B., Schraml, P. & Kaigala, G. V. Spatial protein heterogeneity analysis in frozen tissues to evaluate tumor heterogeneity. PLoS ONE 16, e0259332 (2021).

    Google Scholar 

Download references