References
-
Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: Trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7, e37235 (2012).
-
Requier, F. et al. Bee and non-bee pollinator importance for local food security. Trends Ecol. Evol. 38, 196–205 (2023).
-
Lukic, B. et al. Genomic diversity and population structure of Carniolan honey bee in its native habitat. BMC Genomics 25, 849 (2024).
-
Papa, G. et al. The honey bee Apis mellifera: An insect at the interface between human and ecosystem health. Biology 11, 233 (2022).
-
O’Sullivan, J. N. Demographic delusions: World population growth is exceeding most projections and jeopardising scenarios for sustainable futures. World 4, 545–568 (2023).
-
Vu, E. D., Chiavini, B. E., Gratton, E. M., Dolezal, A. G. & Bonning, B. C. Representative honey bee viruses do not replicate in the small hive beetle, Aethina tumida Murray. J. Invertebr. Pathol. 207, 108207 (2024).
-
Venu, H. S. et al. Bioefficacy and molecular characterization of Bacillus thuringiensis strain NBAIR BtGa against greater wax moth, Galleria mellonella L.. Braz. J. Microbiol. 55, 4009–4017 (2024).
-
Farruggia, F. T. et al. A retrospective analysis of honey bee (Apis mellifera) pesticide toxicity data. PLoS ONE 17, e0265962 (2022).
-
Iredale, M. E. et al. Development of a multiplex real-time quantitative reverse-transcription polymerase chain reaction for the detection of four bee viruses. J. Virol. Methods 328, 114953 (2024).
-
Miller, D. L., Smith, E. A. & Newton, I. L. G. A bacterial symbiont protects honey bees from fungal disease. MBio 12, e00503-e521 (2021).
-
Ye, M., Li, X., Yang, F. & Zhou, B. Beneficial bacteria as biocontrol agents for American foulbrood disease in honey bees (Apis mellifera ). J. Insect Sci. 23, 6 (2023).
-
Zhao, H. et al. Review on effects of some insecticides on honey bee health. Pestic. Biochem. Physiol. 188, 105219 (2022).
-
Araújo, M. F., Castanheira, E. M. S. & Sousa, S. F. The buzz on insecticides: A review of uses, molecular structures, targets, adverse effects, and alternatives. Molecules 28, 3641 (2023).
-
Badawy, M. E. I., Nasr, H. M. & Rabea, E. I. Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie 46, 177–193 (2015).
-
Barathi, S., Sabapathi, N., Kandasamy, S. & Lee, J. Present status of insecticide impacts and eco-friendly approaches for remediation-a review. Environ. Res. 240, 117432 (2024).
-
Belzunces, L. P., Tchamitchian, S. & Brunet, J.-L. Neural effects of insecticides in the honey bee. Apidologie 43, 348–370 (2012).
-
Halm, M.-P., Rortais, A., Arnold, G., Taséi, J. N. & Rault, S. New risk assessment approach for systemic insecticides: The case of honey bees and imidacloprid (Gaucho). Environ. Sci. Technol. 40, 2448–2454 (2006).
-
Hladik, M. L., Main, A. R. & Goulson, D. Environmental risks and challenges associated with neonicotinoid insecticides. Environ. Sci. Technol. 52, 3329–3335 (2018).
-
Laurino, D., Porporato, M., Patetta, A., Manino, A. & Va, D. Toxicity of neonicotinoid insecticides to honey bees: Laboratory tests. Bull. Insectol. 64, 107–113 (2011).
-
Rezende-Teixeira, P., Dusi, R. G., Jimenez, P. C., Espindola, L. S. & Costa-Lotufo, L. V. What can we learn from commercial insecticides? Efficacy, toxicity, environmental impacts, and future developments. Environ. Pollut. 300, 118983 (2022).
-
Koch, M. S. et al. The food and environmental safety of Bt crops. Front. Plant Sci. 6, 283 (2015).
-
Roh, J.-Y., Choi, J.-Y., Li, M.-S., Jin, B.-R. & Je, Y.-H. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17, 547–559 (2007).
-
Hayakawa, T., Shitomi, Y., Miyamoto, K. & Hori, H. GalNAc pretreatment inhibits trapping of Bacillus thuringiensis Cry1Ac on the peritrophic membrane of Bombyx mori. FEBS Lett. 576, 331–335 (2004).
-
Jurat-Fuentes, J. L., Heckel, D. G. & Ferré, J. Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis. Annu. Rev. Entomol. 66, 121–140 (2021).
-
Mishra, R. et al. Bacteria-derived pesticidal proteins active against hemipteran pests. J. Invertebr. Pathol. 195, 107834 (2022).
-
Banerjee, R. et al. Peptide mediated, enhanced toxicity of a bacterial pesticidal protein against southern green stink bug. Microb. Biotechnol. 15, 2071–2082 (2022).
-
Bravo, A., Likitvivatanavong, S., Gill, S. S. & Soberón, M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423–431 (2011).
-
Berry, C. et al. Specificity database for bacterial pesticidal proteins against invertebrate targets. J. Invertebr. Pathol. 211, 108319 (2025).
-
Duan, J. J., Marvier, M., Huesing, J., Dively, G. & Huang, Z. Y. A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS ONE 3, e1415 (2008).
-
Hendriksma, H. P., Härtel, S., Babendreier, D., von der Ohe, W. & Steffan-Dewenter, I. Effects of multiple Bt proteins and GNA lectin on in vitro-reared honey bee larvae. Apidologie 43, 549–560 (2012).
-
Niu, L., Ma, W., Lei, C., Jurat-Fuentes, J. L. & Chen, L. Herbicide and insect resistant Bt cotton pollen assessment finds no detrimental effects on adult honey bees. Environ. Pollut. 230, 479–485 (2017).
-
Potrich, M. et al. Effect of entomopathogens on Africanized Apis mellifera L. (Hymenoptera: Apidae). Rev. Bras. Entomol. 62, 23–28 (2018).
-
Ramirez-Romero, R., Desneux, N., Decourtye, A., Chaffiol, A. & Pham-Delègue, M. H. Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)?. Ecotoxicol. Environ. Saf. 70, 327–333 (2008).
-
Ramirez-Romero, R., Chaufaux, J. & Pham-Delègue, M.-H. Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performancesof the honeybee Apis mellifera, a comparative approach. Apidologie 36, 601–611 (2005).
-
Caccia, S., Casartelli, M. & Tettamanti, G. The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell Tissue Res. 377, 505–525 (2019).
-
De Sousa, G. & Conte, H. Midgut morphophysiology in Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae). Micron 51, 1–8 (2013).
-
Bonning, B. C. Pathogen Binding and Entry: Molecular Interactions with the Insect Gut. Annu. Rev. Entomol. 70, 165–184 (2025).
-
Jiménez, J., Mishra, R., Wang, X., Magee, C. M. & Bonning, B. C. Composition and abundance of midgut plasma membrane proteins in two major hemipteran vectors of plant viruses, Bemisia tabaci and Myzus persicae. Arch. Insect Biochem. Physiol. 116, e22133 (2024).
-
Tavares, C. S., Mishra, R., Ghobrial, P. N. & Bonning, B. C. Composition and abundance of midgut surface proteins in the Asian citrus psyllid. Diaphorina citri. J. Proteomics 261, 104580 (2022).
-
Bayyareddy, K., Zhu, X., Orlando, R. & Adang, M. J. Proteome Analysis of Cry4Ba Toxin-interacting Aedes aegypti Lipid Rafts using geLC–MS/MS. J. Proteome Res. 11, 5843–5855 (2012).
-
Javed, M. A., Coutu, C., Theilmann, D. A., Erlandson, M. A. & Hegedus, D. D. Proteomics analysis of Trichoplusia ni midgut epithelial cell brush border membrane vesicles. Insect Sci. 26, 424–440 (2019).
-
Valero-Rello, A., Baeza-Delgado, C., Andreu-Moreno, I. & Sanjuán, R. Cellular receptors for mammalian viruses. PLOS Pathog. 20, e1012021 (2024).
-
Cardoen, D. et al. Differential proteomics in dequeened honeybee colonies reveals lower viral load in hemolymph of fertile worker bees. PLoS ONE 6, e20043 (2011).
-
Cardoen, D. et al. Worker Honeybee Sterility: A Proteomic Analysis of Suppressed Ovary Activation. J. Proteome Res. 11, 2838–2850 (2012).
-
Hernández, L. G. et al. Worker Honeybee Brain Proteome. J. Proteome Res. 11, 1485–1493 (2012).
-
Wolschin, F., Shpigler, H., Amdam, G. V. & Bloch, G. Size-related variation in protein abundance in the brain and abdominal tissue of bumble bee workers. Insect Mol. Biol. 21, 319–325 (2012).
-
Chan, Q. W. T. et al. The Worker Honeybee Fat Body Proteome Is Extensively Remodeled Preceding a Major Life-History Transition. PLoS ONE 6, e24794 (2011).
-
Houdelet, C. et al. Proteomics of Anatomical Sections of the Gut of Nosema-Infected Western Honeybee (Apis mellifera) Reveals Different Early Responses to Nosema spp. Isolates. J. Proteome Res. 20, 804–817 (2021).
-
Erban, T., Sopko, B., Kadlikova, K., Talacko, P. & Harant, K. Varroa destructor parasitism has a greater effect on proteome changes than the deformed wing virus and activates TGF-β signaling pathways. Sci. Rep. 9, 9400 (2019).
-
Kurze, C. et al. Differential proteomics reveals novel insights into Nosema–honey bee interactions. Insect Biochem. Mol. Biol. 79, 42–49 (2016).
-
Michaud, S. et al. Response of the honey bee (Apis mellifera) proteome to Israeli acute paralysis virus (IAPV) infection. Can. J. Zool. 93, 711–720 (2014).
-
Zhang, Y., Zhang, G., Huang, X. & Han, R. Proteomic Analysis of Apis cerana and Apis mellifera Larvae Fed with Heterospecific Royal Jelly and by CSBV Challenge. PLoS ONE 9, e102663 (2014).
-
Pardo-López, L., Soberón, M. & Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 37, 3–22 (2013).
-
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
-
Zybailov, B. et al. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res. 5, 2339–2347 (2006).
-
EPA. Pollinator Risk Assessment Guidance. https://www.epa.gov/pollinator-protection/pollinator-risk-assessment-guidance (2014).
-
OECD. Test No. 213: Honeybees, Acute Oral Toxicity Test. https://doi.org/10.1787/9789264070165-en (1998).
-
Sato, R. Utilization of Diverse Molecules as Receptors by Cry Toxin and the Promiscuous Nature of Receptor-Binding Sites Which Accounts for the Diversity. Biomolecules 14, 425 (2024).
-
Ricroch, A., Akkoyunlu, S., Martin-Laffon, J. & Kuntz, M. Assessing the environmental safety of transgenic plants: Honey bees as a case study. In Advances in Botanical Research vol. 86 111–167 (Elsevier, 2018).
-
Gassmann, A. J. & Reisig, D. D. Management of insect pests with Bt crops in the United States. Annu. Rev. Entomol. 68, 31–49 (2023).
-
Wang, Y. et al. Ingestion of Bt rice pollen does not reduce the survival or hypopharyngeal gland development of Apis mellifera adults. Environ. Toxicol. Chem. 36, 1243–1248 (2017).
-
Han, P., Niu, C.-Y., Biondi, A. & Desneux, N. Does transgenic Cry1Ac + CpTI cotton pollen affect hypopharyngeal gland development and midgut proteolytic enzyme activity in the honey bee Apis mellifera L. (Hymenoptera, Apidae)?. Ecotoxicology 21, 2214–2221 (2012).
-
Han, P., Niu, C.-Y., Lei, C.-L., Cui, J.-J. & Desneux, N. Quantification of toxins in a Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L.. Ecotoxicology 19, 1452–1459 (2010).
-
Wang, Y. et al. Toxicological, biochemical, and histopathological analyses demonstrating that Cry1C and Cry2A are not toxic to larvae of the honeybee, Apis mellifera. J. Agric. Food Chem. 63, 6126–6132 (2015).
-
Motta, E. V. S. & Moran, N. A. The honeybee microbiota and its impact on health and disease. Nat. Rev. Microbiol. 22, 122 (2023).
-
Dai, P. et al. The effect of Bt Cry9Ee toxin on honey bee brood and adults reared in vitro, Apis mellifera (Hymenoptera: Apidae). Ecotoxicol. Environ. Saf. 181, 381–387 (2019).
-
Hendriksma, H. P. et al. Effect of stacked insecticidal cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria. PLoS ONE 8, e59589 (2013).
-
Jia, H.-R. et al. The effects of Bt Cry1Ie toxin on bacterial diversity in the midgut of Apis mellifera ligustica (Hymenoptera: Apidae). Sci. Rep. 6, 24664 (2016).
-
Han, B. et al. Greater wax moth control in apiaries can be improved by combining Bacillus thuringiensis and entrapments. Nat. Commun. 14, 7073 (2023).
-
EPA. Reregistration Eligibility Decision (RED) Bacillus thuringiensis. https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_PC-006400_30-Mar-98.pdf (1998).
-
EPA. First beehive uses of the currently registered active ingredient Bacillus thuringiensis, subsp. aizawai strain ABTS 1857. https://www.epa.gov/pesticides/first-beehive-uses-currently-registered-active-ingredient-bacillus-thuringiensis-subsp (2020).
-
EPA. EPA proposes registration of new wax moth control. American Bee Journal (2020).
-
Bravo, A., Gill, S. S. & Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49, 423–435 (2007).
-
Pigott, C. R. & Ellar, D. J. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev. 71, 255–281 (2007).
-
Adegawa, S. et al. Cry toxins use multiple ATP-binding cassette transporter subfamily C members as low-efficiency receptors in Bombyx mori. Biomolecules 14, 271 (2024).
-
Heckel, D. G. The essential and enigmatic role of ABC transporters in Bt resistance of noctuids and other insect pests of agriculture. Insects 12, 389 (2021).
-
Dermauw, W. & Van Leeuwen, T. The ABC gene family in arthropods: Comparative genomics and role in insecticide transport and resistance. Insect Biochem. Mol. Biol. 45, 89–110 (2014).
-
Caccia, S. et al. Association of Cry1Ac toxin resistance in Helicoverpa zea (Boddie) with increased alkaline phosphatase levels in the midgut lumen. Appl. Environ. Microbiol. 78, 5690–5698 (2012).
-
Herrero, S., Gechev, T., Bakker, P. L., Moar, W. J. & de Maagd, R. A. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. BMC Genomics 6, 96 (2005).
-
Zhang, S. et al. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochem. Mol. Biol. 39, 421–429 (2009).
-
Fabrick, J. A. et al. Reduced cadherin expression associated with resistance to Bt toxin Cry1Ac in pink bollworm. Pest Manag. Sci. 76, 67–74 (2020).
-
Morin, S. et al. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc. Natl. Acad. Sci. 100, 5004–5009 (2003).
-
Guo, Z. et al. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth. PLoS Genet. 11, e1005124 (2015).
-
Wolfersberger, M. et al. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp. Biochem. Physiol. A Physiol. 86, 301–308 (1987).
-
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
-
Doellinger, J., Schneider, A., Hoeller, M. & Lasch, P. Sample preparation by easy extraction and digestion (SPEED)—A universal, rapid, and detergent-free protocol for proteomics based on acid extraction. Mol. Cell. Proteomics MCP 19, 209–222 (2020).
-
Savojardo, C., Martelli, P. L., Fariselli, P., Profiti, G. & Casadio, R. BUSCA: An integrative web server to predict subcellular localization of proteins. Nucleic Acids Res. 46, W459–W466 (2018).
-
Armenteros, J. J. A., Sønderby, C. K., Sønderby, S. K., Nielsen, H. & Winther, O. DeepLoc: Prediction of protein subcellular localization using deep learning. Bioinformatics 33, 3387–3395 (2017).
-
Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).
-
Huerta-Cepas, J. et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
-
Käll, L., Krogh, A. & Sonnhammer, E. L. L. Advantages of combined transmembrane topology and signal peptide prediction—The Phobius web server. Nucleic Acids Res. 35, W429–W432 (2007).
-
Gíslason, M. H., Nielsen, H., Almagro Armenteros, J. J. & Johansen, A. R. Prediction of GPI-anchored proteins with pointer neural networks. Curr. Res. Biotechnol. 3, 6–13 (2021).
-
Bairoch, A. et al. The Universal Protein Resource (UniProt). Nucleic Acids Res. 33, D154-159 (2005).
-
Wu, C. H. et al. The Universal Protein Resource (UniProt): An expanding universe of protein information. Nucleic Acids Res. 34, D187–D191 (2006).
-
Thurmond, J. et al. FlyBase 2.0: The next generation. Nucleic Acids Res. 47, D759–D765 (2019).
-
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).
-
Charif, D. & Lobry, J. R. SeqinR 10–2: A contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In Structural Approaches to Sequence Evolution: Molecules, Networks, Populations (eds Bastolla, U. et al.) 207–232 (Springer, Berlin Heidelberg, 2007). https://doi.org/10.1007/978-3-540-35306-5_10.
-
Fomitcheva-Khartchenko, A., Rapsomaniki, M. A., Sobottka, B., Schraml, P. & Kaigala, G. V. Spatial protein heterogeneity analysis in frozen tissues to evaluate tumor heterogeneity. PLoS ONE 16, e0259332 (2021).
