References
-
Lone, S. A., Jeelani, G., Mukherjee, A. & Coomar, P. Arsenic fate in upper indus river basin (UIRB) aquifers: controls of hydrochemical processes, provenances and water-aquifer matrix interaction. Sci. Total Environ. 795, 148734 (2021).
-
Shaikh, M. A. S. et al. Hydrogeochemical analysis of aquifer in Northwestern part of bangladesh: implication for targeting low arsenic zone. Int. J. Energy Water Resour. 9, 1–16 (2025).
-
Goswami, R. et al. Potential arsenic–chromium–lead Co-contamination in the hilly terrain of Arunachal Pradesh, north-eastern india: genesis and health perspective. Chemosphere 323, 138067 (2023).
-
Neog, N. et al. Arsenic contamination in the groundwater of Northeastern india: critical Understandings on geotectonic controls and the need for intervention. Curr. Opin. Environ. Sci. Health. 38, 100539 (2024).
-
Shah, B. A. Status of groundwater arsenic contamination in the States of North East india: A review. in Sinha Ray, S., Acharyya, A. (eds) Ground Water Contam. India: Adverse Eff. Habitats. 25–32 (2024).
-
Adeloju, S. B., Khan, S. & Patti, A. F. Arsenic contamination of groundwater and its implications for drinking water quality and human health in under-developed countries and remote communities—a review. Appl. Sci. 11, 1926 (2021).
-
Banning, A. Geogenic arsenic and uranium in germany: Large-scale distribution control in sediments and groundwater. J. Hazard. Mater. 405, 124186 (2021).
-
Deshaee, A., Shakeri, A., Mehrabi, B., Mehr, M. R. & Ghoreyshinia, S. K. Occurrence, origin and health risk of arsenic in water and palm dates from the Bazman geothermal field, SE Iran. Geothermics 102, 102378 (2022).
-
Wang, Z. et al. Formation mechanism of high arsenic geothermal water in Gonghe basin, Northwest China. J. Geochem. Explor. 280, 107890 (2025).
-
Hoang, A. T. P., Prinpreecha, N. & Kim, K. W. Influence of mining activities on arsenic concentration in rice in asia: A review. Minerals 11, 472 (2021).
-
Higgins, M. A., Metcalf, M. J. & Robbins, G. A. Nonpoint Source Arsenic Contamination of Soil and Groundwater from Legacy Pesticides. (2022).
-
Morosini, C. et al. Arsenic movement and fractionation in agricultural soils which received wastewater from an adjacent industrial site for 50 years. Sci. Total Environ. 898, 165422 (2023).
-
Sarwar, T., Khan, S., Muhammad, S. & Amin, S. Arsenic speciation, mechanisms, and factors affecting rice uptake and potential human health risk: A systematic review. Environ. Technol. Innov. 22, 101392 (2021).
-
Ganie, S. Y., Javaid, D., Hajam, Y. A. & Reshi, M. S. Arsenic toxicity: sources, pathophysiology and mechanism. Toxicol. Res. (Camb). 13, tfad111 (2024).
-
Campbell, K. M. & Nordstrom, D. K. Arsenic speciation and sorption in natural environments. Rev. Mineral. Geochem. 79, 185–216 (2014).
-
Khalid, S. et al. Arsenic behaviour in soil-plant system: biogeochemical reactions and chemical speciation influences. in Anjum, N., Gill, S., Tuteja, N. (eds) Enhancing cleanup of environmental pollutants: volume 2: non-biological approaches. 97–140 (Springer, 2017).
-
Kumarathilaka, P., Seneweera, S., Meharg, A. & Bundschuh, J. Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors-a review. Water Res. 140, 403–414 (2018).
-
Vergara-Gerónimo, C. A., Río, D., Rodríguez-Dorantes, A. L., Ostrosky-Wegman, M., Salazar, A. M. & P. & Arsenic-protein interactions as a mechanism of arsenic toxicity. Toxicol. Appl. Pharmacol. 431, 115738 (2021).
-
Tripathi, S. et al. Therapeutic effects of CoenzymeQ10, Biochanin A and Phloretin against arsenic and chromium induced oxidative stress in mouse (Mus musculus) brain. 3 Biotech. 12, 116 (2022).
-
Soni, R. K., Singh, O. & Arsine Risk assessment, environmental, and Health hazard. In Hazardous Gases. 11–21 (Elsevier, 2021).
-
Zhao, Q. et al. Metabolome analysis revealed the critical role of betaine for arsenobetaine biosynthesis in the marine Medaka (Oryzias melastigma). Environ. Pollut. 359, 124612 (2024).
-
Rahman, M. A., Hasegawa, H., Rahman, M. M., Miah, M. A. M. & Tasmin, A. Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain. Ecotoxicol. Environ. Saf. 69, 317–324 (2008).
-
Surenbaatar, U. et al. Bioaccumulation of lead, cadmium, and arsenic in a mining area and its associated health effects. Toxics 11, 519 (2023).
-
Hossain, M. F. Arsenic contamination in Bangladesh—an overview. Agric. Ecosyst. Environ. 113, 1–16 (2006).
-
Nookabkaew, S., Rangkadilok, N., Mahidol, C., Promsuk, G. & Satayavivad, J. Determination of arsenic species in rice from Thailand and other Asian countries using simple extraction and HPLC-ICP-MS analysis. J. Agric. Food Chem. 61, 6991–6998 (2013).
-
García-Rico, L., Valenzuela-Rodríguez, M. P., Meza-Montenegro, M. M. & Lopez-Duarte, A. L. Arsenic in rice and rice products in Northwestern Mexico and health risk assessment. Food Addit. Contaminants: Part. B. 13, 25–33 (2020).
-
Guo, J. et al. Worldwide distribution, health risk, treatment technology, and development tendency of Geogenic high-arsenic groundwater. Water (Basel). 16, 478 (2024).
-
Jackson, R. & Grainge, J. W. Arsenic and cancer. Can. Med. Assoc. J. 113, 396 (1975).
-
Garcia-Vargas, G. G. & Cebrian, M. E. Health effects of arsenic. in Toxicology of Metals, Volume I 423–438 (CRC Press, 2023).
-
Genchi, G., Lauria, G., Catalano, A., Carocci, A. & Sinicropi, M. S. Arsenic: a review on a great health issue worldwide. Appl. Sci. 12, 6184 (2022).
-
Garcia-Manyes, S., Jimenez, G., Padro, A., Rubio, R. & Rauret, G. Arsenic speciation in contaminated soils. Talanta 58, 97–109 (2002).
-
Bowell, R. J., Morley, N. H. & Din, V. K. Arsenic speciation in soil porewaters from the Ashanti Mine, Ghana. Appl. Geochem. 9, 15–22 (1994).
-
Yuan, Z. F. et al. pH dependence of arsenic speciation in paddy soils: the role of distinct methanotrophs. Environ. Pollut. 318, 120880 (2023).
-
Kim, S., Kim, H. B., Kwon, E. E. & Baek, K. Mitigating translocation of arsenic from rice field to soil pore solution by manipulating the redox conditions. Sci. Total Environ. 762, 143124 (2021).
-
Norton, G. J. et al. Variation in grain arsenic assessed in a diverse panel of rice (Oryza sativa) grown in multiple sites. New Phytol. 193, 650–664 (2012).
-
Biswas, A., Biswas, S. & Santra, S. C. Arsenic in irrigated water, soil, and rice: perspective of the cropping seasons. Paddy Water Environ. 12, 407–412 (2014).
-
Chowdhury, N. R. et al. Monsoonal paddy cultivation with phase-wise arsenic distribution in exposed and control sites of West Bengal, alongside its assimilation in rice grain. J. Hazard. Mater. 400, 123206 (2020).
-
Chowdhury, N. R. et al. Springer,. Distribution of arsenic in rice grain from West Bengal, India: Its relevance to geographical origin, variety, cultivars and cultivation season. in Global arsenic hazard: Ecotoxicology and remediation .509–531 (2022).
-
Chi, Y. et al. Effects of fly Ash and steel slag on cadmium and arsenic accumulation in rice grains and soil health: A field study over four crop seasons in Guangdong, China. Geoderma 419, 115879 (2022).
-
Li, N., Wang, J. & Song, W. Y. Arsenic uptake and translocation in plants. Plant. Cell. Physiol. 57, 4–13 (2016).
-
Xu, F. & Li, P. Biogeochemical mechanisms of iron (Fe) and manganese (Mn) in groundwater and soil profiles in the Zhongning section of the Weining plain (northwest China). Sci. Total Environ. 939, 173506 (2024).
-
Thounaojam, T. C. et al. Transporters: the molecular drivers of arsenic stress tolerance in plants. J. Plant. Biochem. Biotechnol. 30, 730–743 (2021).
-
Tawfik, D. S. & Viola, R. E. Arsenate replacing phosphate: alternative life chemistries and ion promiscuity. Biochemistry 50, 1128–1134 (2011).
-
Geng, A., Lian, W., Wang, X. & Chen, G. Regulatory mechanisms underlying arsenic uptake, transport, and detoxification in rice. Int. J. Mol. Sci. 24, 11031 (2023).
-
Geng, A. et al. The molecular mechanism of the response of rice to arsenic stress and effective strategies to reduce the accumulation of arsenic in grain. Int. J. Mol. Sci. 25, 2861 (2024).
-
Ma, J. F. et al. A silicon transporter in rice. Nature 440, 688–691 (2006).
-
Ma, J. F. et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences 105, 9931–9935 (2008).
-
Kalita, J. et al. Apple Academic Press,. Translocation and accumulation of arsenic in rice grains: role of transporters in tolerance and its incorporation in the food chain. in Arsenic in Rice. 119–142 (2024).
-
Guo, C., Ma, X., Gao, F. & Guo, Y. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 11, 1143157 (2023).
-
Verma, S. & Kuila, A. Bioremediation of heavy metals by microbial process. Environ. Technol. Innov. 14, 100369 (2019).
-
Ayilara, M. S. & Babalola, O. O. Bioremediation of environmental wastes: the role of microorganisms. Front. Agron. 5, 1183691 (2023).
-
Nayak, A., Bhushan, B. & Wilson, I. Current Soil Bioremediation Technologies: an Assessment. In Advances In Bioremediation and Phytoremediation for Sustainable Soil Management: Principles, Monitoring and Remediation. 17–29 (Springer, 2022).
-
Preetha, J. S. Y. et al. Biotechnology advances in bioremediation of arsenic: A review. Molecules 28, 1474 (2023).
-
Thongnok, S., Siripornadulsil, W. & Siripornadulsil, S. Responses to arsenic stress of rice varieties coinoculated with the heavy metal-resistant and rice growth-promoting bacteria Pseudomonas stutzeri and Cupriavidus Taiwanensis. Plant Physiol. Biochem. 191, 42–54 (2022).
-
Majhi, B., Semwal, P., Mishra, S. K., Misra, S. & Chauhan, P. S. Arsenic stress management through arsenite and arsenate-tolerant growth-promoting bacteria in rice. Int. Microbiol. 28, 11–25 (2025).
-
Bruins, M. R., Kapil, S. & Oehme, F. W. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45, 198–207 (2000).
-
Huda, N. et al. Biochemical process and functional genes of arsenic accumulation in bioremediation: agricultural soil. Int. J. Environ. Sci. Technol. 19, 9189–9208 (2022).
-
Pandey, N., Manjunath, K. & Sahu, K. Screening of plant growth promoting attributes and arsenic remediation efficacy of bacteria isolated from agricultural soils of Chhattisgarh. Arch. Microbiol. 202, 567–578 (2020).
-
Banerjee, S., Datta, S., Chattyopadhyay, D. & Sarkar, P. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J. Environ. Sci. Health Part. A. 46, 1736–1747 (2011).
-
Slaughter, D. C., Macur, R. E. & Inskeep, W. P. Inhibition of microbial arsenate reduction by phosphate. Microbiol. Res. 167, 151–156 (2012).
-
Singh, N. et al. Arsenic mediated modifications in Bacillus Aryabhattai and their biotechnological applications for arsenic bioremediation. Chemosphere 164, 524–534 (2016).
-
Chillé, D. et al. Binding of arsenic by common functional groups: an experimental and quantum-mechanical study. Appl. Sci. 12, 3210 (2022).
-
Spanò, A. et al. Arsenic adsorption and toxicity reduction of an exopolysaccharide produced by Bacillus licheniformis B3-15 of shallow hydrothermal vent origin. J. Mar. Sci. Eng. 11, 325 (2023).
-
Vishnoi, N., Dixit, S. & Singh, D. P. Differential pattern of arsenic binding by the cell wall in two arsenite tolerant Bacillus strains isolated from arsenic contaminated soil. Cell. Mol. Biol. 62, 1000138 (2016).
-
Nkosi, N. C., Basson, A. K., Ntombela, Z. G., Maliehe, T. S. & Pullabhotla, R. V. S. R. Isolation, identification and characterization of bioflocculant-producing bacteria from activated sludge of vulindlela wastewater treatment plant. Appl. Microbiol. 1, 586–606 (2021).
-
Pandey, N. & Bhatt, R. Arsenic resistance and accumulation by two bacteria isolated from a natural arsenic contaminated site. J. Basic. Microbiol. 55, 1275–1286 (2015).
-
Nepple, B. B., Flynn, I. & Bachofen, R. Morphological changes in phototrophic bacteria induced by metalloid oxyanions. Microbiol. Res. 154, 191–198 (1999).
-
Karasz, D. C., Weaver, A. I., Buckley, D. H. & Wilhelm, R. C. Conditional filamentation as an adaptive trait of bacteria and its ecological significance in soils. Environ. Microbiol. 24, 1–17 (2022).
-
Dey, S., Nayak, A. K., Dhiman, R., Rajaram, H. & Das, S. Pleomorphism drives the lifestyle transitions in bacteria for micro-niche adaptation in biofilm. Rev. Environ. Sci. Biotechnol. 24, 1–30 (2025).
-
Sutterlin, H. A. et al. Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway. Proc. Natl. Acad. Sci. 113, E1565–E1574 (2016).
-
Njenga, R., Boele, J., Öztürk, Y. & Koch, H. G. Coping with stress: how bacteria fine-tune protein synthesis and protein transport. Journal Biol. Chemistry 299, 105163 (2023).
-
Justice, S. S., Hunstad, D. A., Cegelski, L. & Hultgren, S. J. Morphological plasticity as a bacterial survival strategy. Nat. Rev. Microbiol. 6, 162–168 (2008).
-
Neumann, G. et al. Cells of Pseudomonas Putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 9, 163–168 (2005).
-
Xiao, A. W., Li, Z., Li, W. C. & Ye, Z. H. The effect of plant growth-promoting rhizobacteria (PGPR) on arsenic accumulation and the growth of rice plants (Oryza sativa L). Chemosphere 242, 125136 (2020).
-
Zeng, W. et al. Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess. Biosyst Eng. 43, 153–167 (2020).
-
El-Beltagi, H. S. et al. Draft genome analysis for Enterobacter kobei, a promising lead bioremediation bacterium. Front. Bioeng. Biotechnol. 11, 1335854 (2024).
-
Arora, H. K. & Chapman, G. B. Transmission electron microscope study of bacterial morphotypes on the anterior dorsal surface of human tongues. Anat. Rec. 259, 276–287 (2000).
-
Akoijam, N. & Joshi, S. R. Bioprospecting acid-and arsenic-tolerant plant growth-promoting rhizobacteria for mitigation of arsenic toxicity in acidic agricultural soils. Arch. Microbiol. 205, 229 (2023).
-
Xu, X. Y., McGrath, S. P. & Zhao, F. J. Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol. 176, 590–599 (2007).
-
Zhao, F. J., Ma, J. F., Meharg, A. A. & McGrath, S. P. Arsenic uptake and metabolism in plants. New Phytol. 181, 777–794 (2009).
-
Ghosh, P. K. et al. Plant growth-promoting Bacillus cereus MCC3402 facilitates rice seedling growth under arsenic-spiked soil. Biocatal. Agric. Biotechnol. 61, 103405 (2024).
-
Syed, S. & Chinthala, P. Heavy metal detoxification by different Bacillus species isolated from solar salterns. Scientifica (Cairo) 2015, 319760 (2015).
-
Ojeda, J. J. & Dittrich, M. Fourier transform infrared spectroscopy for molecular analysis of microbial cells. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology 881, 187–211 (Humana Press, 2012).
-
Lom, J. & Weiser, J. Surface pattern of some microsporidian spores as seen in the scanning electron microscope. Folia Parasitol. (Praha). 19, 359–363 (1972).
-
Kim, J. S. et al. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J. Vet. Sci. 7, 321–326 (2006).
-
Abdul-Baki, A. A. & Anderson, J. D. Vigor determination in soybean seed by multiple criteria 1. Crop Sci. 13, 630–633 (1973).
-
Kos, V., Budič, B., Hudnik, V., Lobnik, F. & Zupan, M. Determination of heavy metal concentrations in plants exposed to different degrees of pollution using ICP-AES. Fresenius J. Anal. Chem. 354, 648–652 (1996).
