Evaluation of arsenic-Tolerant plant growth-promoting rhizobacteria from Manipur for mitigating arsenic translocation and enhancing growth in rice (Oryza sativa)

evaluation-of-arsenic-tolerant-plant-growth-promoting-rhizobacteria-from-manipur-for-mitigating-arsenic-translocation-and-enhancing-growth-in-rice-(oryza-sativa)
Evaluation of arsenic-Tolerant plant growth-promoting rhizobacteria from Manipur for mitigating arsenic translocation and enhancing growth in rice (Oryza sativa)

References

  1. Lone, S. A., Jeelani, G., Mukherjee, A. & Coomar, P. Arsenic fate in upper indus river basin (UIRB) aquifers: controls of hydrochemical processes, provenances and water-aquifer matrix interaction. Sci. Total Environ. 795, 148734 (2021).

    Google Scholar 

  2. Shaikh, M. A. S. et al. Hydrogeochemical analysis of aquifer in Northwestern part of bangladesh: implication for targeting low arsenic zone. Int. J. Energy Water Resour. 9, 1–16 (2025).

  3. Goswami, R. et al. Potential arsenic–chromium–lead Co-contamination in the hilly terrain of Arunachal Pradesh, north-eastern india: genesis and health perspective. Chemosphere 323, 138067 (2023).

    Google Scholar 

  4. Neog, N. et al. Arsenic contamination in the groundwater of Northeastern india: critical Understandings on geotectonic controls and the need for intervention. Curr. Opin. Environ. Sci. Health. 38, 100539 (2024).

  5. Shah, B. A. Status of groundwater arsenic contamination in the States of North East india: A review. in Sinha Ray, S., Acharyya, A. (eds) Ground Water Contam. India: Adverse Eff. Habitats. 25–32 (2024).

  6. Adeloju, S. B., Khan, S. & Patti, A. F. Arsenic contamination of groundwater and its implications for drinking water quality and human health in under-developed countries and remote communities—a review. Appl. Sci. 11, 1926 (2021).

    Google Scholar 

  7. Banning, A. Geogenic arsenic and uranium in germany: Large-scale distribution control in sediments and groundwater. J. Hazard. Mater. 405, 124186 (2021).

    Google Scholar 

  8. Deshaee, A., Shakeri, A., Mehrabi, B., Mehr, M. R. & Ghoreyshinia, S. K. Occurrence, origin and health risk of arsenic in water and palm dates from the Bazman geothermal field, SE Iran. Geothermics 102, 102378 (2022).

    Google Scholar 

  9. Wang, Z. et al. Formation mechanism of high arsenic geothermal water in Gonghe basin, Northwest China. J. Geochem. Explor. 280, 107890 (2025).

  10. Hoang, A. T. P., Prinpreecha, N. & Kim, K. W. Influence of mining activities on arsenic concentration in rice in asia: A review. Minerals 11, 472 (2021).

    Google Scholar 

  11. Higgins, M. A., Metcalf, M. J. & Robbins, G. A. Nonpoint Source Arsenic Contamination of Soil and Groundwater from Legacy Pesticides. (2022).

  12. Morosini, C. et al. Arsenic movement and fractionation in agricultural soils which received wastewater from an adjacent industrial site for 50 years. Sci. Total Environ. 898, 165422 (2023).

    Google Scholar 

  13. Sarwar, T., Khan, S., Muhammad, S. & Amin, S. Arsenic speciation, mechanisms, and factors affecting rice uptake and potential human health risk: A systematic review. Environ. Technol. Innov. 22, 101392 (2021).

    Google Scholar 

  14. Ganie, S. Y., Javaid, D., Hajam, Y. A. & Reshi, M. S. Arsenic toxicity: sources, pathophysiology and mechanism. Toxicol. Res. (Camb). 13, tfad111 (2024).

    Google Scholar 

  15. Campbell, K. M. & Nordstrom, D. K. Arsenic speciation and sorption in natural environments. Rev. Mineral. Geochem. 79, 185–216 (2014).

    Google Scholar 

  16. Khalid, S. et al. Arsenic behaviour in soil-plant system: biogeochemical reactions and chemical speciation influences. in Anjum, N., Gill, S., Tuteja, N. (eds) Enhancing cleanup of environmental pollutants: volume 2: non-biological approaches. 97–140 (Springer, 2017).

  17. Kumarathilaka, P., Seneweera, S., Meharg, A. & Bundschuh, J. Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors-a review. Water Res. 140, 403–414 (2018).

    Google Scholar 

  18. Vergara-Gerónimo, C. A., Río, D., Rodríguez-Dorantes, A. L., Ostrosky-Wegman, M., Salazar, A. M. & P. & Arsenic-protein interactions as a mechanism of arsenic toxicity. Toxicol. Appl. Pharmacol. 431, 115738 (2021).

    Google Scholar 

  19. Tripathi, S. et al. Therapeutic effects of CoenzymeQ10, Biochanin A and Phloretin against arsenic and chromium induced oxidative stress in mouse (Mus musculus) brain. 3 Biotech. 12, 116 (2022).

  20. Soni, R. K., Singh, O. & Arsine Risk assessment, environmental, and Health hazard. In Hazardous Gases. 11–21 (Elsevier, 2021).

  21. Zhao, Q. et al. Metabolome analysis revealed the critical role of betaine for arsenobetaine biosynthesis in the marine Medaka (Oryzias melastigma). Environ. Pollut. 359, 124612 (2024).

    Google Scholar 

  22. Rahman, M. A., Hasegawa, H., Rahman, M. M., Miah, M. A. M. & Tasmin, A. Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain. Ecotoxicol. Environ. Saf. 69, 317–324 (2008).

    Google Scholar 

  23. Surenbaatar, U. et al. Bioaccumulation of lead, cadmium, and arsenic in a mining area and its associated health effects. Toxics 11, 519 (2023).

    Google Scholar 

  24. Hossain, M. F. Arsenic contamination in Bangladesh—an overview. Agric. Ecosyst. Environ. 113, 1–16 (2006).

    Google Scholar 

  25. Nookabkaew, S., Rangkadilok, N., Mahidol, C., Promsuk, G. & Satayavivad, J. Determination of arsenic species in rice from Thailand and other Asian countries using simple extraction and HPLC-ICP-MS analysis. J. Agric. Food Chem. 61, 6991–6998 (2013).

    Google Scholar 

  26. García-Rico, L., Valenzuela-Rodríguez, M. P., Meza-Montenegro, M. M. & Lopez-Duarte, A. L. Arsenic in rice and rice products in Northwestern Mexico and health risk assessment. Food Addit. Contaminants: Part. B. 13, 25–33 (2020).

    Google Scholar 

  27. Guo, J. et al. Worldwide distribution, health risk, treatment technology, and development tendency of Geogenic high-arsenic groundwater. Water (Basel). 16, 478 (2024).

    Google Scholar 

  28. Jackson, R. & Grainge, J. W. Arsenic and cancer. Can. Med. Assoc. J. 113, 396 (1975).

    Google Scholar 

  29. Garcia-Vargas, G. G. & Cebrian, M. E. Health effects of arsenic. in Toxicology of Metals, Volume I 423–438 (CRC Press, 2023).

  30. Genchi, G., Lauria, G., Catalano, A., Carocci, A. & Sinicropi, M. S. Arsenic: a review on a great health issue worldwide. Appl. Sci. 12, 6184 (2022).

    Google Scholar 

  31. Garcia-Manyes, S., Jimenez, G., Padro, A., Rubio, R. & Rauret, G. Arsenic speciation in contaminated soils. Talanta 58, 97–109 (2002).

    Google Scholar 

  32. Bowell, R. J., Morley, N. H. & Din, V. K. Arsenic speciation in soil porewaters from the Ashanti Mine, Ghana. Appl. Geochem. 9, 15–22 (1994).

    Google Scholar 

  33. Yuan, Z. F. et al. pH dependence of arsenic speciation in paddy soils: the role of distinct methanotrophs. Environ. Pollut. 318, 120880 (2023).

    Google Scholar 

  34. Kim, S., Kim, H. B., Kwon, E. E. & Baek, K. Mitigating translocation of arsenic from rice field to soil pore solution by manipulating the redox conditions. Sci. Total Environ. 762, 143124 (2021).

    Google Scholar 

  35. Norton, G. J. et al. Variation in grain arsenic assessed in a diverse panel of rice (Oryza sativa) grown in multiple sites. New Phytol. 193, 650–664 (2012).

    Google Scholar 

  36. Biswas, A., Biswas, S. & Santra, S. C. Arsenic in irrigated water, soil, and rice: perspective of the cropping seasons. Paddy Water Environ. 12, 407–412 (2014).

    Google Scholar 

  37. Chowdhury, N. R. et al. Monsoonal paddy cultivation with phase-wise arsenic distribution in exposed and control sites of West Bengal, alongside its assimilation in rice grain. J. Hazard. Mater. 400, 123206 (2020).

    Google Scholar 

  38. Chowdhury, N. R. et al. Springer,. Distribution of arsenic in rice grain from West Bengal, India: Its relevance to geographical origin, variety, cultivars and cultivation season. in Global arsenic hazard: Ecotoxicology and remediation .509–531 (2022).

  39. Chi, Y. et al. Effects of fly Ash and steel slag on cadmium and arsenic accumulation in rice grains and soil health: A field study over four crop seasons in Guangdong, China. Geoderma 419, 115879 (2022).

    Google Scholar 

  40. Li, N., Wang, J. & Song, W. Y. Arsenic uptake and translocation in plants. Plant. Cell. Physiol. 57, 4–13 (2016).

    Google Scholar 

  41. Xu, F. & Li, P. Biogeochemical mechanisms of iron (Fe) and manganese (Mn) in groundwater and soil profiles in the Zhongning section of the Weining plain (northwest China). Sci. Total Environ. 939, 173506 (2024).

  42. Thounaojam, T. C. et al. Transporters: the molecular drivers of arsenic stress tolerance in plants. J. Plant. Biochem. Biotechnol. 30, 730–743 (2021).

    Google Scholar 

  43. Tawfik, D. S. & Viola, R. E. Arsenate replacing phosphate: alternative life chemistries and ion promiscuity. Biochemistry 50, 1128–1134 (2011).

    Google Scholar 

  44. Geng, A., Lian, W., Wang, X. & Chen, G. Regulatory mechanisms underlying arsenic uptake, transport, and detoxification in rice. Int. J. Mol. Sci. 24, 11031 (2023).

    Google Scholar 

  45. Geng, A. et al. The molecular mechanism of the response of rice to arsenic stress and effective strategies to reduce the accumulation of arsenic in grain. Int. J. Mol. Sci. 25, 2861 (2024).

    Google Scholar 

  46. Ma, J. F. et al. A silicon transporter in rice. Nature 440, 688–691 (2006).

    Google Scholar 

  47. Ma, J. F. et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences 105, 9931–9935 (2008).

  48. Kalita, J. et al. Apple Academic Press,. Translocation and accumulation of arsenic in rice grains: role of transporters in tolerance and its incorporation in the food chain. in Arsenic in Rice. 119–142 (2024).

  49. Guo, C., Ma, X., Gao, F. & Guo, Y. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 11, 1143157 (2023).

    Google Scholar 

  50. Verma, S. & Kuila, A. Bioremediation of heavy metals by microbial process. Environ. Technol. Innov. 14, 100369 (2019).

    Google Scholar 

  51. Ayilara, M. S. & Babalola, O. O. Bioremediation of environmental wastes: the role of microorganisms. Front. Agron. 5, 1183691 (2023).

    Google Scholar 

  52. Nayak, A., Bhushan, B. & Wilson, I. Current Soil Bioremediation Technologies: an Assessment. In Advances In Bioremediation and Phytoremediation for Sustainable Soil Management: Principles, Monitoring and Remediation. 17–29 (Springer, 2022).

  53. Preetha, J. S. Y. et al. Biotechnology advances in bioremediation of arsenic: A review. Molecules 28, 1474 (2023).

    Google Scholar 

  54. Thongnok, S., Siripornadulsil, W. & Siripornadulsil, S. Responses to arsenic stress of rice varieties coinoculated with the heavy metal-resistant and rice growth-promoting bacteria Pseudomonas stutzeri and Cupriavidus Taiwanensis. Plant Physiol. Biochem. 191, 42–54 (2022).

    Google Scholar 

  55. Majhi, B., Semwal, P., Mishra, S. K., Misra, S. & Chauhan, P. S. Arsenic stress management through arsenite and arsenate-tolerant growth-promoting bacteria in rice. Int. Microbiol. 28, 11–25 (2025).

    Google Scholar 

  56. Bruins, M. R., Kapil, S. & Oehme, F. W. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45, 198–207 (2000).

    Google Scholar 

  57. Huda, N. et al. Biochemical process and functional genes of arsenic accumulation in bioremediation: agricultural soil. Int. J. Environ. Sci. Technol. 19, 9189–9208 (2022).

    Google Scholar 

  58. Pandey, N., Manjunath, K. & Sahu, K. Screening of plant growth promoting attributes and arsenic remediation efficacy of bacteria isolated from agricultural soils of Chhattisgarh. Arch. Microbiol. 202, 567–578 (2020).

    Google Scholar 

  59. Banerjee, S., Datta, S., Chattyopadhyay, D. & Sarkar, P. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J. Environ. Sci. Health Part. A. 46, 1736–1747 (2011).

    Google Scholar 

  60. Slaughter, D. C., Macur, R. E. & Inskeep, W. P. Inhibition of microbial arsenate reduction by phosphate. Microbiol. Res. 167, 151–156 (2012).

    Google Scholar 

  61. Singh, N. et al. Arsenic mediated modifications in Bacillus Aryabhattai and their biotechnological applications for arsenic bioremediation. Chemosphere 164, 524–534 (2016).

    Google Scholar 

  62. Chillé, D. et al. Binding of arsenic by common functional groups: an experimental and quantum-mechanical study. Appl. Sci. 12, 3210 (2022).

    Google Scholar 

  63. Spanò, A. et al. Arsenic adsorption and toxicity reduction of an exopolysaccharide produced by Bacillus licheniformis B3-15 of shallow hydrothermal vent origin. J. Mar. Sci. Eng. 11, 325 (2023).

    Google Scholar 

  64. Vishnoi, N., Dixit, S. & Singh, D. P. Differential pattern of arsenic binding by the cell wall in two arsenite tolerant Bacillus strains isolated from arsenic contaminated soil. Cell. Mol. Biol. 62, 1000138 (2016).

    Google Scholar 

  65. Nkosi, N. C., Basson, A. K., Ntombela, Z. G., Maliehe, T. S. & Pullabhotla, R. V. S. R. Isolation, identification and characterization of bioflocculant-producing bacteria from activated sludge of vulindlela wastewater treatment plant. Appl. Microbiol. 1, 586–606 (2021).

    Google Scholar 

  66. Pandey, N. & Bhatt, R. Arsenic resistance and accumulation by two bacteria isolated from a natural arsenic contaminated site. J. Basic. Microbiol. 55, 1275–1286 (2015).

    Google Scholar 

  67. Nepple, B. B., Flynn, I. & Bachofen, R. Morphological changes in phototrophic bacteria induced by metalloid oxyanions. Microbiol. Res. 154, 191–198 (1999).

    Google Scholar 

  68. Karasz, D. C., Weaver, A. I., Buckley, D. H. & Wilhelm, R. C. Conditional filamentation as an adaptive trait of bacteria and its ecological significance in soils. Environ. Microbiol. 24, 1–17 (2022).

    Google Scholar 

  69. Dey, S., Nayak, A. K., Dhiman, R., Rajaram, H. & Das, S. Pleomorphism drives the lifestyle transitions in bacteria for micro-niche adaptation in biofilm. Rev. Environ. Sci. Biotechnol. 24, 1–30 (2025).

  70. Sutterlin, H. A. et al. Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway. Proc. Natl. Acad. Sci. 113, E1565–E1574 (2016).

    Google Scholar 

  71. Njenga, R., Boele, J., Öztürk, Y. & Koch, H. G. Coping with stress: how bacteria fine-tune protein synthesis and protein transport. Journal Biol. Chemistry 299, 105163 (2023).

  72. Justice, S. S., Hunstad, D. A., Cegelski, L. & Hultgren, S. J. Morphological plasticity as a bacterial survival strategy. Nat. Rev. Microbiol. 6, 162–168 (2008).

    Google Scholar 

  73. Neumann, G. et al. Cells of Pseudomonas Putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 9, 163–168 (2005).

    Google Scholar 

  74. Xiao, A. W., Li, Z., Li, W. C. & Ye, Z. H. The effect of plant growth-promoting rhizobacteria (PGPR) on arsenic accumulation and the growth of rice plants (Oryza sativa L). Chemosphere 242, 125136 (2020).

    Google Scholar 

  75. Zeng, W. et al. Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess. Biosyst Eng. 43, 153–167 (2020).

    Google Scholar 

  76. El-Beltagi, H. S. et al. Draft genome analysis for Enterobacter kobei, a promising lead bioremediation bacterium. Front. Bioeng. Biotechnol. 11, 1335854 (2024).

    Google Scholar 

  77. Arora, H. K. & Chapman, G. B. Transmission electron microscope study of bacterial morphotypes on the anterior dorsal surface of human tongues. Anat. Rec. 259, 276–287 (2000).

    Google Scholar 

  78. Akoijam, N. & Joshi, S. R. Bioprospecting acid-and arsenic-tolerant plant growth-promoting rhizobacteria for mitigation of arsenic toxicity in acidic agricultural soils. Arch. Microbiol. 205, 229 (2023).

    Google Scholar 

  79. Xu, X. Y., McGrath, S. P. & Zhao, F. J. Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol. 176, 590–599 (2007).

    Google Scholar 

  80. Zhao, F. J., Ma, J. F., Meharg, A. A. & McGrath, S. P. Arsenic uptake and metabolism in plants. New Phytol. 181, 777–794 (2009).

    Google Scholar 

  81. Ghosh, P. K. et al. Plant growth-promoting Bacillus cereus MCC3402 facilitates rice seedling growth under arsenic-spiked soil. Biocatal. Agric. Biotechnol. 61, 103405 (2024).

    Google Scholar 

  82. Syed, S. & Chinthala, P. Heavy metal detoxification by different Bacillus species isolated from solar salterns. Scientifica (Cairo) 2015, 319760 (2015).

  83. Ojeda, J. J. & Dittrich, M. Fourier transform infrared spectroscopy for molecular analysis of microbial cells. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology 881, 187–211 (Humana Press, 2012).

  84. Lom, J. & Weiser, J. Surface pattern of some microsporidian spores as seen in the scanning electron microscope. Folia Parasitol. (Praha). 19, 359–363 (1972).

    Google Scholar 

  85. Kim, J. S. et al. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J. Vet. Sci. 7, 321–326 (2006).

    Google Scholar 

  86. Abdul-Baki, A. A. & Anderson, J. D. Vigor determination in soybean seed by multiple criteria 1. Crop Sci. 13, 630–633 (1973).

    Google Scholar 

  87. Kos, V., Budič, B., Hudnik, V., Lobnik, F. & Zupan, M. Determination of heavy metal concentrations in plants exposed to different degrees of pollution using ICP-AES. Fresenius J. Anal. Chem. 354, 648–652 (1996).

    Google Scholar 

Download references