Identifying key genes for European canker resistance in apple: machine learning and gene expression profiling of quantitative disease resistance

identifying-key-genes-for-european-canker-resistance-in-apple:-machine-learning-and-gene-expression-profiling-of-quantitative-disease-resistance
Identifying key genes for European canker resistance in apple: machine learning and gene expression profiling of quantitative disease resistance

References

  1. Weber, R. W. S. Biology and control of the Apple canker fungus Neonectria ditissima (syn. N. galligena) from a Northwestern European perspective. Erwerbs-Obstbau 56, 95–107 (2014).

    Google Scholar 

  2. Ghasemkhani, M. Resistance against fruit tree canker in apple (SLU, 2015).

  3. Gómez-Cortecero, A. et al. Variation in host and pathogen in the Neonectria/Malus Interaction; toward an Understanding of the genetic basis of resistance to European canker. Front. Plant. Sci. 7, 1365 (2016).

    Google Scholar 

  4. Bus, V. G. M. et al. Genetic mapping of the European canker (Neonectria ditissima) resistance locus Rnd1 from Malus ‘Robusta 5’. Tree Genet. Genomes. 15, 25 (2019).

    Google Scholar 

  5. Karlström, A. et al. Identification of novel genetic regions associated with resistance to European canker in Apple. BMC Plant. Biol. 22, 452 (2022).

    Google Scholar 

  6. Bus, V. et al. Preliminary genetic mapping of fire blight and European canker resistances in two apple breeding families. Acta Hortic. 199–204. https://doi.org/10.17660/ActaHortic.2021.1307.31 (2021).

  7. Skytte af Sätra, J., Odilbekov, F., Ingvarsson, P. K., van de Weg, E. & Garkava-Gustavsson, L. Parametric mapping of QTL for resistance to European canker in Apple in ‘Aroma’ × ‘Discovery’. Tree Genet. Genomes. 19, 12 (2023).

    Google Scholar 

  8. Nelson, R., Wiesner-Hanks, T., Wisser, R. & Balint-Kurti, P. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet. 19, 21–33 (2018).

    Google Scholar 

  9. Stephens, C., Hammond-Kosack, K. E. & Kanyuka, K. WAKsing plant immunity, waning diseases. J. Exp. Bot. 73, 22–37 (2022).

    Google Scholar 

  10. Liu, X. et al. PacBio full-length transcriptome of wild Apple (Malus sieversii) provides insights into canker disease dynamic response. BMC Genom. 22, 52 (2021).

    Google Scholar 

  11. Dixon, R. A. et al. The phenylpropanoid pathway and plant defence-a genomics perspective. Mol. Plant. Pathol. 3, 371–390 (2002).

    Google Scholar 

  12. Kaur, S. et al. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiol. Mol. Biol. Plants. 28, 485–504 (2022).

    Google Scholar 

  13. Liao, W. et al. Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa. Funct. Integr. Genomics. 14, 517–529 (2014).

    Google Scholar 

  14. Li, P. et al. Fungal canker pathogens trigger carbon starvation by inhibiting carbon metabolism in Poplar stems. Sci. Rep. 9, 10111 (2019).

    Google Scholar 

  15. Purohit, A. et al. Comparative transcriptomic profiling of susceptible and resistant cultivars of Pigeonpea demonstrates early molecular responses during Fusarium Udum infection. Sci. Rep. 11, 22319 (2021).

    Google Scholar 

  16. Bergmann, T. et al. QTL mapping and transcriptome analysis identify novel QTLs and candidate genes in Brassica villosa for quantitative resistance against Sclerotinia sclerotiorum. Theor. Appl. Genet. 136, 86 (2023).

    Google Scholar 

  17. Wang, J. et al. Pangenome-Wide association study and transcriptome analysis reveal a novel QTL and candidate genes controlling both panicle and leaf blast resistance in rice. Rice (N Y). 17, 27 (2024).

    Google Scholar 

  18. Fredericksen, M., Fields, P. D., Pasquier, D., Ricci, L., Ebert, D. & V. & QTL study reveals candidate genes underlying host resistance in a red queen model system. PLoS Genet. 19, e1010570 (2023).

    Google Scholar 

  19. Sia, J., Zhang, W., Cheng, M., Bogdan, P. & Cook, D. E. Machine learning-based identification of general transcriptional predictors for plant disease. New. Phytol. 245, 785–806 (2025).

    Google Scholar 

  20. Panahi, B. & Hassani, M. Hosseinzaeh Gharajeh, N. Integrative analysis of RNA-Seq data and machine learning approaches to identify biomarkers for Rhizoctonia Solani resistance in sugar beet. Biochem. Biophys. Rep. 41, 101920 (2025).

    Google Scholar 

  21. Gómez-Cortecero, A. The Molecular Basis of Pathogenicity of Neonectria Ditissima (University of Reading, 2019).

  22. Aronesty, E. Comparison of sequencing utility programs. Open. Bioinforma J. 7, 1–8 (2013).

    Google Scholar 

  23. Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data (Babraham Bioinformatics, 2023).

  24. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 14, 417–419 (2017).

    Google Scholar 

  25. Diaz-Uriarte, R. & GeneSrF VarSelRF: a web-based tool and R package for gene selection and classification using random forest. BMC Bioinform. 8, 328 (2007).

    Google Scholar 

  26. Friedman, J. H. & Meulman, J. J. Clustering objects on subsets of attributes (with discussion). J. Royal Stat. Soc. B. 66, 815–849 (2004).

    Google Scholar 

  27. Delgado, A., García-Fernández, B., Gómez-Cortecero, A. & Dapena, E. Susceptibility of Cider Apple Accessions to European Canker-Comparison between Evaluations in Field Planted Trees and Rapid Screening Tests. Plants 11, (2022).

  28. Shuttleworth, L. A., Newman, S. & Korkos, I. A comparison of new and existing rootstocks to reduce canker of Apple trees caused by Neonectria ditissima (Nectriaceae, Hypocreales). CABI Agric. Biosci. 4, 37 (2023).

    Google Scholar 

  29. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Google Scholar 

  30. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Google Scholar 

  31. Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S. & Smyth, G. K. Robust hyperparameter Estimation protects against hypervariable genes and improves power to detect differential expression. Ann. Appl. Stat. 10, 946–963 (2016).

    Google Scholar 

  32. Jung, S. et al. 15 years of GDR: new data and functionality in the genome database for rosaceae. Nucleic Acids Res. 47, D1137–D1145 (2019).

    Google Scholar 

  33. Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Google Scholar 

  34. Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov. (Camb). 2, 100141 (2021).

    Google Scholar 

  35. Kanehisa, M. & Goto, S. K. E. G. G. Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Google Scholar 

  36. Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).

    Google Scholar 

  37. Degenhardt, F., Seifert, S. & Szymczak, S. Evaluation of variable selection methods for random forests and omics data sets. Brief. Bioinf. 20, 492–503 (2019).

    Google Scholar 

  38. Dong, N. Q. & Lin, H. X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant. Biol. 63, 180–209 (2021).

    Google Scholar 

  39. Sun, H. et al. Analysis of five rice 4-coumarate:coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochem. Biophys. Res. Commun. 430, 1151–1156 (2013).

    Google Scholar 

  40. Alariqi, M. et al. Cotton 4-coumarate-CoA ligase 3 enhanced plant resistance to Verticillium dahliae by promoting jasmonic acid signaling-mediated vascular lignification and metabolic flux. Plant. J. 115, 190–204 (2023).

    Google Scholar 

  41. Dhokane, D., Karre, S., Kushalappa, A. C. & McCartney, C. Integrated Metabolo-Transcriptomics reveals fusarium head blight candidate resistance genes in wheat QTL-Fhb2. PLoS ONE. 11, e0155851 (2016).

    Google Scholar 

  42. Li, P., Ruan, Z., Fei, Z., Yan, J. & Tang, G. Integrated transcriptome and metabolome analysis revealed that flavonoid biosynthesis May dominate the resistance of Zanthoxylum bungeanum against stem canker. J. Agric. Food Chem. 69, 6360–6378 (2021).

    Google Scholar 

  43. Xu, J., Wang, X. & Guo, W. The cytochrome P450 superfamily: key players in plant development and defense. J. Integr. Agric. 14, 1673–1686 (2015).

    Google Scholar 

  44. Miedes, E., Vanholme, R., Boerjan, W. & Molina, A. The role of the secondary cell wall in plant resistance to pathogens. Front. Plant. Sci. 5, 358 (2014).

    Google Scholar 

  45. Liu, L., Liu, J. & Xu, N. Ligand recognition and signal transduction by lectin receptor-like kinases in plant immunity. Front. Plant. Sci. 14, 1201805 (2023).

    Google Scholar 

  46. Pi, L. et al. A G-type lectin receptor-like kinase in Nicotiana benthamiana enhances resistance to the fungal pathogen Sclerotinia sclerotiorum by complexing with CERK1/LYK4. Phytopathol. Res. 5, 27 (2023).

    Google Scholar 

  47. Bao, Y. et al. A pair of G-type lectin receptor-like kinases modulates nlp20-mediated immune responses by coupling to the RLP23 receptor complex. J. Integr. Plant. Biol. 65, 1312–1327 (2023).

    Google Scholar 

  48. Ortiz-Morea, F. A., Liu, J., Shan, L. & He, P. Malectin-like receptor kinases as protector deities in plant immunity. Nat. Plants. 8, 27–37 (2022).

    Google Scholar 

  49. Taylor, R. J., Tagiltsev, G. & Briggs, J. A. G. The structure of COPI vesicles and regulation of vesicle turnover. FEBS Lett. 597, 819–835 (2023).

    Google Scholar 

  50. Li, Y., Liu, Y. & Zolman, B. K. Metabolic alterations in the Enoyl-CoA hydratase 2 mutant disrupt peroxisomal pathways in seedlings. Plant. Physiol. 180, 1860–1876 (2019).

    Google Scholar 

  51. Song, L., Fang, Y., Chen, L., Wang, J. & Chen, X. Role of non-coding RNAs in plant immunity. Plant. Commun. 2, 100180 (2021).

    Google Scholar 

  52. Harkenrider, M. et al. Overexpression of rice Wall-Associated kinase 25 (OsWAK25) alters resistance to bacterial and fungal pathogens. PLoS ONE. 11, e0147310 (2016).

    Google Scholar 

  53. Liu, Z. et al. The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathog. 8, e1002467 (2012).

    Google Scholar 

  54. Zuo, C. et al. Genome-wide annotation and expression responses to biotic stresses of the WALL-ASSOCIATED KINASE – RECEPTOR-LIKE KINASE (WAK-RLK) gene family in Apple (Malus domestica). Eur. J. Plant. Pathol. 153, 1–15 (2018).

    Google Scholar 

  55. Guo, L. et al. Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces. Proc. Natl. Acad. Sci. USA. 115, 11637–11642 (2018).

    Google Scholar 

  56. Dutta, T. K. et al. Functional analysis of a susceptibility gene (HIPP27) in the Arabidopsis thaliana-Meloidogyne incognita pathosystem by using a genome editing strategy. BMC Plant. Biol. 23, 390 (2023).

    Google Scholar 

  57. Nakao, M., Nakamura, R., Kita, K., Inukai, R. & Ishikawa, A. Non-host resistance to penetration and hyphal growth of Magnaporthe oryzae in Arabidopsis. Sci. Rep. 1, 171 (2011).

    Google Scholar 

  58. Fukuoka, S. et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325, 998–1001 (2009).

    Google Scholar 

  59. Cheng, Y., Xu, S. M., Santucci, K., Lindner, G. & Janitz, M. Machine learning and related approaches in transcriptomics. Biochem. Biophys. Res. Commun. 724, 150225 (2024).

    Google Scholar 

Download references