References
-
Ahmed, M. E. et al. Investigation the synergistic effect of Chitosan and iron oxide nanoparticles against multidrug resistance proteus mirabilis: Inhibition of RsbA gene and insilico evaluation study. Inorg. Chem. Commun., 180,115130. (2025).
-
Alghurabi, M. N., Mubarak, T. H., Judran, A. K. & Hasoon, B. A. Two-Stage Pulsed Laser Ablation for the Production of Ag@ TiO2 Core–Shell Nanoparticles with Enhanced antimicrobial Properties: an in Silico Study 1–26 (Plasmonics, 2025).
-
Najm, M. A. et al. Titanium dioxide nanoparticles augment Ciprofloxacin activity via Inhibition of biofilm formation for multidrug resistance bacteria in-vitro and insilco prediction study. Sci. Rep. 15 (1), 18014 (2025).
-
Jawad, K. H. et al. Eco-friendly methods for synthesis of MgS@ CuS nanocomposite for overcoming multidrug resistance bacteria: insilico assessment study. J. Drug Deliv. Sci. Technol., 109 (3), 106998. (2025).
-
Ahmed, M. E., Sulaiman, G. M., Hasoon, B. A., Khan, R. A. & Mohammed, H. A. Green synthesis and characterization of Apple peel-derived selenium nanoparticles for anti‐fungal activity and effects of MexA gene expression on efflux pumps in acinetobacter baumannii. Appl. Organomet. Chem., 39 (2), 7805-7820. (2025).
-
Gudkov, S. V. et al. A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. 9, 641481 (2021).
-
Masadeh, M. M. et al. Synergistic antibacterial effect of ZnO nanoparticles and antibiotics against Multidrug-Resistant biofilm bacteria. Curr. Drug Deliv. 22, 92–106 (2025).
-
Abo-Shama, U. H. et al. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms. Infect. Drug Resist., 7(13), 351–362. (2020).
-
Fadwa, A. O., Alkoblan, D. K., Mateen, A. & Albarag, A. M. Synergistic effects of zinc oxide nanoparticles and various antibiotics combination against Pseudomonas aeruginosa clinically isolated bacterial strains. Saudi J. Biol. Sci. 28, 928–935 (2021).
-
Agarwal, H., Shanmugam, V. A. & Review on Anti-Inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-Based approach. Bioorg. Chem. 94, 103423 (2020).
-
Mohammad, R. K. S., Homayouni Tabrizi, G., Ardalan, M., Yadamani, T. & Safavi, S. Green synthesis of zinc oxide nanoparticles and evaluation of Anti-Angiogenesis, Anti-Inflammatory and cytotoxicity properties. J. Biosci. 44, 1–9 (2019).
-
Al-Momani, H. et al. Al; al Haj Mahmoud, S. Anti-Bacterial activity of green synthesised silver and zinc oxide nanoparticles against Propionibacterium acnes. Pharmaceuticals 17, 255 (2024).
-
Tan, Y. Y. et al. Development and evaluation of topical zinc oxide nanogels formulation using dendrobium anosmum and its effect on acne vulgaris. Molecules 28, 6749 (2023).
-
Elhabal, S. F. et al. Enhanced Antibacterial Activity of Clindamycin Using Molecularly Imprinted Polymer Nanoparticles Loaded with Polyurethane Nanofibrous Scaffolds for the Treatment of Acne Vulgaris 16, 947 (Pharmaceutics, 2024).
-
Huang, X., Zheng, X., Xu, Z. & Yi, C. ZnO-Based nanocarriers for drug delivery application: from passive to smart strategies. Int. J. Pharm. 534, 190–194 (2017).
-
Baek, S., Joo, S. H. & Toborek, M. Treatment of Antibiotic-Resistant bacteria by encapsulation of ZnO nanoparticles in an alginate biopolymer: insights into treatment mechanisms. J. Hazard. Mater. 373, 122–130 (2019).
-
Capsules, C. & Clindamycin Capsules 2021, 2021–2023. (2022).
-
Bohrey, S., Chourasiya, V. & Pandey, A. Polymeric nanoparticles containing diazepam: Preparation, Optimization, Characterization, in-Vitro drug release and release kinetic study. Nano Converg. 3, 3 (2016).
-
Weng, J., Tong, H. H. Y. & Chow, S. F. In Vitro Release Study of the Polymeric Drug Nanoparticles: Development and Validation of a Novel Method. 12, 732 (Pharmaceutics, 2020).
-
Modi, S. & Anderson, B. D. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic Dialysis method. Mol. Pharm. 10, 3076–3089 (2013).
-
Singh, S., Pandey, V. K., Tewari, R. P. & Agarwal, V. Nanoparticle based drug delivery system: advantages and applications. Indian J. Sci. Technol. 4, 177–180 (2011).
-
Yu, X., Pishko, M. V. & Nanoparticle-Based Biocompatible and targeted drug delivery: characterization and in vitro studies. Biomacromolecules 12, 3205–3212 (2011).
-
Quinn, P. J. et al. Veterinary Microbiology and Microbial Disease; John Wiley & Sons, ; ISBN 1118251164. (2011).
-
Kok, T., Worswich, D. & Gowans, E. in Some Serological Techniques for Microbial and Viral Infections. Pract. Med. Microbiol. 14th edn, 179–204 (eds Collee, J., Fraser, A., Marmion, B. & Simmons, A.) (Edinburgh, 1996).
-
Institute, C. and L.S. Performance Standards for Antimicrobial Susceptibility Testing 2020.
-
CLSI Performance Standards for Antifungal Susceptibility. Testing of yeasts M27M44S-Ed3. Clin. Lab. Stand. Inst. ,42(20),136–137. (2022).
-
Clinical and Laboratory Standards Institute (CLSI) M07. Clinical and laboratory standards Institute methods for Dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Clin. Lab. Stand. Inst.,3 (2), e91 (2018).
-
Parvekar, P., Palaskar, J., Metgud, S., Maria, R. & Dutta, S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater. Investig Dent. 7, 105–109 (2020).
-
Neese, F. The ORCA program system. Wiley Interdiscip Rev. Comput. Mol. Sci. 2, 73–78 (2012).
-
Neese, F. & Software Update The ORCA program System—Version 5.0. Wiley interdiscip. Rev. Comput. Mol. Sci. 12, e1606 (2022).
-
Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).
-
Downs, R. T. & Hall-Wallace, M. The American mineralogist crystal structure database. Am. Mineral. 88, 247–250 (2003).
-
Dittmer, A., Stoychev, G. L., Maganas, D., Auer, A. A. & Neese, F. Computation of NMR shielding constants for solids using an embedded cluster approach with DFT, Double-Hybrid DFT, and MP2. J. Chem. Theory Comput. 16, 6950–6967 (2020).
-
Izsák, R. et al. Quantum computing in pharma: A multilayer embedding approach for near future applications. J. Comput. Chem. 44, 406–421 (2023).
-
Shafei, R. et al. Electronic and optical properties of Eu2+-Activated Narrow-Band phosphors for Phosphor-Converted Light-Emitting diode applications: insights from a theoretical spectroscopy perspective. J. Am. Chem. Soc. 144, 8038–8053 (2022).
-
Shafei, R. et al. Theoretical spectroscopy study of the photoluminescence properties of narrow band Eu 2+-Doped phosphors containing multiple candidate doping Centers. Prediction of an unprecedented narrow band red phosphor. Phys. Chem. Chem. Phys. 26, 6277–6291 (2024).
-
Bergner, A., Dolg, M., Küchle, W., Stoll, H. & Preuß, H. Ab initio Energy-Adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 80, 1431–1441 (1993).
-
Guo, Y. et al. Linear scaling perturbative triples correction approximations for Open-Shell Domain-Based local pair natural orbital coupled cluster singles and doubles theory [DLPNO-CCSD (T/T)]. J. Chem. Phys. 152(2), e024116 (2020).
-
Neese, F., Wennmohs, F. & Hansen, A. Efficient and accurate local approximations to Coupled-Electron pair approaches: an attempt to revive the pair natural orbital method. J. Chem. Phys. 130(11), e114108 (2009).
-
Helmich-Paris, B., de Souza, B., Neese, F. & Izsák, R. An improved chain of spheres for exchange algorithm. J. Chem. Phys. 155(10), e104109 (2021).
-
Garcia-Ratés, M. & Neese, F. Effect of the solute cavity on the solvation energy and its derivatives within the framework of the Gaussian charge scheme. J. Comput. Chem. 41, 922–939 (2020).
-
Shafei, R. et al. Theoretical spectroscopy for unraveling the intensity mechanism of the optical and photoluminescent spectra of chiral re (I) transition metal complexes. J. Chem. Phys. 159(8), e084102 (2023).
-
Pochapski, D. J., dos Carvalho, C., Leite, G. W., Pulcinelli, S. H. & Santilli, C. V. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir 37, 13379–13389 (2021).
-
Li, L. C. & Shi, Y. Zeta potential. Encycl Pharm. Sci. Technol., 4th Ed., 3888–3901 (2013).
-
Gregory, J. & O’Melia, C. R. Fundamentals of flocculation. Crit. Rev. Environ. Sci. Technol. 19, 185–230 (1989).
-
Wu, D., Si, M., Xue, H. Y. & Wong, H. L. Nanomedicine applications in the treatment of breast cancer: current state of the Art. Int. J. Nanomed., 12, 5879–5892. (2017).
-
Bahrami, B. et al. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett. 190, 64–83 (2017).
-
Wang, N., Cheng, X., Li, N., Wang, H. & Chen, H. Nanocarriers and their loading strategies. Adv. Healthc. Mater. 8, 1801002 (2019).
-
Shahbazi, M. A. & Hamidi, M. The impact of Preparation parameters on typical attributes of Chitosan-Heparin nanohydrogels: particle Size, loading Efficiency, and drug release. Drug Dev. Ind. Pharm. 39, 1774–1782 (2013).
-
Lee, J. H. & Yeo, Y. Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci. 125, 75–84 (2015).
-
Dang, Y. & Guan, J. Nanoparticle-Based drug delivery systems for cancer therapy. Smart Mater. Med. 1, 10–19 (2020).
-
Elumalai, K., Srinivasan, S. & Shanmugam, A. Review of the efficacy of Nanoparticle-Based drug delivery systems for cancer treatment. Biomed. Technol. 5, 109–122 (2024).
-
Patel, P. et al. Surface Modification of Nanoparticles for Targeted Drug Delivery; Springer, ISBN 3030061140. (2019).
-
Banerjee, A., Qi, J., Gogoi, R., Wong, J. & Mitragotri, S. Role of nanoparticle Size, shape and surface chemistry in oral drug delivery. J. Control Release. 238, 176–185 (2016).
-
Aisida, S. O. et al. Biogenic synthesis of zinc oxide nanorods for biomedical applications and photodegradation of Rhodamine B. Mater. Today Commun. 33, 104660 (2022).
-
Benitez-Salazar, M. I. et al. Chemical synthesis versus green synthesis to obtain ZnO powders: evaluation of the antibacterial capacity of the nanoparticles obtained by the chemical method. J. Environ. Chem. Eng. 9, 106544 (2021).
-
Saha, K. et al. Ameliorative effects of Clindamycin-Nanoceria conjugate: A ROS responsive smart drug delivery system for diabetic wound healing study. J. Trace Elem. Med. Biol. 75, 127107 (2023).
-
Zamani, M. et al. Synthesis of Polymer-Clindamycin conjugates through Lipase-Catalyzed esterification and RAFT polymerization. Polym. (Guildf), 317, e127965. (2024).
-
Subba, B. et al. Antifungal Activity of Zinc Oxide Nanoparticles (ZnO NPs) on Fusarium Equiseti Phytopathogen Isolated from Tomato Plant in Nepal. Heliyon 10. (2024).
-
Hjiri, M. et al. Ammonia gas sensors based on undoped and Ca-Doped ZnO nanoparticles. RSC Adv. 14, 5001–5011 (2024).
-
Sastry, S. V., Reddy, I. K. & Khan, M. A. Atenolol Gastrointestinal therapeutic system: optimization of formulation variables using response surface methodology. J. Control Release. 45, 121–130 (1997).
-
Li, P. & Zhao, L. Developing early formulations: practice and perspective. Int. J. Pharm. 341, 1–19 (2007).
-
Xin, Y., Yin, M., Zhao, L., Meng, F. & Luo, L. Recent progress on Nanoparticle-Based drug delivery systems for cancer therapy. Cancer Biol. Med. 14, 228 (2017).
-
Moku, G., Gopalsamuthiram, V. R., Hoye, T. R. & Panyam, J. Surface modification of nanoparticles: methods and applications. Surf. Modif. Polym. Methods Appl., 32, 317–346. (2019).
-
Ding, C. & Li, Z. A. Review of drug release mechanisms from nanocarrier systems. Mater. Sci. Eng. C. 76, 1440–1453 (2017).
-
Dziadkowiec, J., Mansa, R., Quintela, A., Rocha, F. & Detellier, C. Preparation, characterization and application in controlled release of Ibuprofen-Loaded Guar Gum/Montmorillonite bionanocomposites. Appl. Clay Sci. 135, 52–63 (2017).
-
Arifin, D. Y., Lee, L. Y. & Wang, C. H. Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv. Drug Deliv Rev. 58, 1274–1325 (2006).
-
Organization, W. H. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; World Health Organization, ISBN 924006270X. (2022).
-
Wang, S. et al. Antibiotic resistance spectrum of E. Coli strains from different samples and Age-Grouped patients: A 10-Year retrospective study. BMJ Open. 13, e067490 (2023).
-
Bhattarai, R. K., Basnet, H. B., Dhakal, I. P. & Devkota, B. Antimicrobial resistance of avian pathogenic Escherichia coli isolated from Broiler, Layer, and breeder chickens. Vet. World. 17, 480 (2024).
-
Kasanga, M. et al. Antimicrobial resistance profiles of Escherichia coli isolated from clinical and environmental samples: findings and implications. JAC-Antimicrobial Resist. 6, dlae061 (2024).
-
Congdon, S. T. et al. Prevalence and antibiotic resistance of Staphylococcus aureus associated with a College-Aged cohort: Life-Style factors that contribute to nasal carriage. Front. Cell. Infect. Microbiol. 13, 1195758 (2023).
-
Tumbarello, M. et al. Infections caused by KPC-Producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J. Antimicrob. Chemother. 70, 2133–2143 (2015).
-
Aytaç, Ö. Antibiotic resistance rates of Klebsiella pneumoniae strains isolated from urine cultures. Northwest. Med. J. 4, 64–69 (2024).
-
An, N., Hong, L. T., Hung, D. V. & Kien, H. T. Van; Hai, L.H. long; Luong, V.H.; Vinh, N.T.H.; Hoa, P.Q.; Hung, L. Van; Son, N.T.; Hong, L.T.; Hung, D.V.; Kien, H.T. Antimicrobial Resistance Patterns of Staphylococcus Aureus Isolated at a General Hospital in Vietnam between 2014 and 2021. Infect. Drug Resist. 259–273. (2024).
-
Rippa, A. et al. Murru, N. Antimicrobial resistance of Listeria monocytogenes strains isolated in food and food-Processing environments in Italy. Antibiotics 13, 525 (2024).
-
El-Ansary, M. & El-Ansary, A. R. Resistance of oral Candida albicans infection to fluconazole and Nystatin among healthy persons after treatment with Azithromycin and hydroxychloroquine to treat suspected SARS-CoV-2 viral infection. Egypt. J. Med. Microbiol. 32, 55–60 (2023).
-
Naylor, N. R. et al. Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control. 7, 1–17 (2018).
-
Eleraky, N. E., Allam, A., Hassan, S. B. & Omar, M. M. Nanomedicine Fight against antibacterial Resistance: an Overview of the Recent Pharmaceutical Innovations. 12, 142 (Pharmaceutics, 2020).
-
Sánchez-López, E. et al. Metal-Based Nanoparticles as antimicrobial Agents: an Overview 10, 292 (Nanomaterials, 2020).
-
Azhdarzadeh, M., Lotfipour, F., Zakeri-Milani, P., Mohammadi, G. & Valizadeh, H. Anti-Bacterial performance of Azithromycin nanoparticles as colloidal drug delivery system against different Gram-Negative and Gram-Positive bacteria. Adv. Pharm. Bull. 2, 17 (2012).
-
Rauta, P. R., Das, N. M., Nayak, D., Ashe, S. & Nayak, B. Enhanced efficacy of clindamycin hydrochloride encapsulated in PLA/PLGA based nanoparticle system for oral delivery. IET Nanobiotechnol. 10, 254–261 (2016).
-
Abd, E. L., Tawab, A., Abo El-Roos, N., El-Gendy, A. A. M. & -; ; Effect of zinc oxide nanoparticles on Staphylococcus aureusisolated from CowsʼMastitic milk. Benha Vet. Med. J. 35, 30–41 (2018).
-
Yaqub, A. et al. Fish health and resistance to Staphylococcus aureus of nile tilapia (Oreochromis Niloticus) fed diet supplemented with zinc oxide nanoparticles and zinc acetate. Biol. Trace Elem. Res. 201, 4912–4925 (2023).
-
Tălăpan, D., Sandu, A. M. & Rafila, A. Antimicrobial resistance of Staphylococcus aureus isolated between 2017 and 2022 from infections at a tertiary care hospital in Romania. Antibiotics 12, 974 (2023).
-
Kakian, F., Arasteh, N., Mirzaei, E. & Motamedifar, M. Study of MIC of silver and zinc oxide Nanoparticles, strong and Cost-Effective antibacterial against Biofilm-Producing acinetobacter baumannii in Shiraz, Southwest of Iran. BMC Infect. Dis. 24, 593 (2024).
-
Fu, G., Vary, P. S. & Lin, C. T. Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B. 109, 8889–8898 (2005).
-
Akbar, N., Aslam, Z., Siddiqui, R., Shah, M. R. & Khan, N. A. Zinc oxide nanoparticles conjugated with Clinically-Approved medicines as potential antibacterial molecules. Amb Express. 11, 1–16 (2021).
-
Mirhosseini, M. & Firouzabadi, F. B. Antibacterial activity of zinc oxide nanoparticle suspensions on Food-borne pathogens. Int. J. Dairy. Technol. 66, 291–295 (2013).
-
El-Waseif, A. Cytotoxicity and antimicrobial activity of naturally and chemically synthesized zinc oxide nanoparticles. J. Arab. Soc. Med. Res. 14, 42 (2019).
-
Sirelkhatim, A. et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro Lett. 7, 219–242 (2015).
-
Lomakin, I. B., Devarkar, S. C., Patel, S., Grada, A. & Bunick, C. G. Sarecycline inhibits protein translation in Cutibacterium acnes 70S ribosome using a Two-Site mechanism. Nucleic Acids Res. 51, 2915–2930 (2023).
-
Khalil, M. A. et al. Synergistic antibacterial and antibiofilm effects of clindamycin and zinc oxide nanoparticles against pathogenic oral Bacillus species. Pathog (Basel Switzerland). 14 https://doi.org/10.3390/pathogens14020138 (2025).
-
Konduru, N. V. et al. Distribution and clearance of Tracheally-Instilled and gavaged uncoated or Silica-Coated zinc oxide Nanoparticles. Part. Fibre Toxicol. 11, 44. https://doi.org/10.1186/s12989-014-0044-6 (2014).
-
Barza, M., Goldstein, J. A., Kane, A., Feingold, D. S. & Pochi, P. E. Systemic absorption of clindamycin hydrochloride after topical application. J. Am. Acad. Dermatol. 7, 208–214. https://doi.org/10.1016/S0190-9622(82)70109-4 (1982).
-
Bistoni, G. Finding chemical concepts in the hilbert space: coupled cluster analyses of noncovalent interactions. Wiley Interdiscip Rev. Comput. Mol. Sci. 10, e1442 (2020).
-
Shafei, R. et al. A combined experimental and computational study on the broadening mechanism of the luminescence in Narrow-Band Eu2+-Doped phosphors. J. Phys. Chem. C., 129(4), 1952–1968, (2025).
-
Yepes, D., Neese, F., List, B. & Bistoni, G. Unveiling the delicate balance of steric and dispersion interactions in organocatalysis using High-Level computational methods. J. Am. Chem. Soc. 142, 3613–3625 (2020).
-
Altun, A., Izsák, R. & Bistoni, G. Local energy decomposition of Coupled-cluster interaction energies: Interpretation, Benchmarks, and comparison with Symmetry‐adapted perturbation theory. Int. J. Quantum Chem. 121, e26339 (2021).
-
Ahmed, H., Böhmdorfer, M., Jäger, W. & Zeitlinger, M. Insights into interspecies protein binding variability using clindamycin as an example. J. Antimicrob. Chemother. 80(2), 363-371, (2024).
-
Mikayilov, E., Zeynalov, N., Taghiyev, D. & Taghiyev, S. Role of computational modeling in the design and development of Nanotechnology-Based drug delivery systems. Chem. Biochem. Eng. Q. 38, 97–110 (2024).
