References
-
Agidigbi, T. S. et al. Transcriptomic identification of genes expressed in invasive S. aureus diabetic foot ulcer infection. Front.Cellular Infect. Microbiol. 13, 1198115. https://doi.org/10.3389/fcimb.2023.1198115 (2023).
-
Mohsin, F., Javaid, S., Tariq, M. & Mustafa, M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int. Immunopharmacol. 139, 112713. https://doi.org/10.1016/j.intimp.2024.112713 (2024).
-
McDermott, K., Fang, M., Boulton, A. J. M., Selvin, E. & Hicks, C. W. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. Diabetes Care 46(1), 209–221. https://doi.org/10.2337/dci22-0043 (2023).
-
Akhtar, S. et al. The prevalence of foot ulcers in diabetic patients in Pakistan: A systematic review and meta-analysis. Front. Public Health 10, 1017201. https://doi.org/10.3389/fpubh.2022.1017201 (2022).
-
Gorecka, J. et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res. Ther. 10(1), 87. https://doi.org/10.1186/s13287-019-1185-1 (2019).
-
Davis, F. M., Kimball, A., Boniakowski, A. & Gallagher, K. Dysfunctional wound healing in diabetic foot ulcers: New crossroads. Curr. Diab.Rep. 18(1), 2. https://doi.org/10.1007/s11892-018-0970-z (2018).
-
Boniakowski, A. E., Kimball, A. S., Jacobs, B. N., Kunkel, S. L. & Gallagher, K. A. Macrophage-mediated inflammation in normal and diabetic wound healing. J. Immunol. (Baltimore, Md.: 1950) 199(1), 17–24. https://doi.org/10.4049/jimmunol.1700223 (2017).
-
Rosique, R. G., Rosique, M. J. & Farina Junior, J. A. Curbing inflammation in skin wound healing: A review. Int. J. Inflamm. 2015, 316235. https://doi.org/10.1155/2015/316235 (2015).
-
Dasari, N. et al. Updates in diabetic wound healing, inflammation, and scarring. Semin. Plast. Surg. 35(3), 153–158. https://doi.org/10.1055/s-0041-1731460 (2021).
-
Patel, S., Srivastava, S., Singh, M. R. & Singh, D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed. Pharm. Biomed. Pharm. 112, 108615. https://doi.org/10.1016/j.biopha.2019.108615 (2019).
-
Al, S. H. Macrophage phenotypes in normal and diabetic wound healing and therapeutic interventions. Cells 11(15), 2430. https://doi.org/10.3390/cells11152430 (2022).
-
Holl, J. et al. Chronic diabetic wounds and their treatment with skin substitutes. Cells 10(3), 655. https://doi.org/10.3390/cells10030655 (2021).
-
Ivanov, E., Akhmetshina, M., Erdiakov, A. & Gavrilova, S. Sympathetic system in wound healing: Multistage control in normal and diabetic skin. Int. J. Mol. Sci. 24(3), 2045. https://doi.org/10.3390/ijms24032045 (2023).
-
Polaka, S. et al. Emerging ROS-modulating technologies for augmentation of the wound healing process. ACS Omega 7(35), 30657–30672. https://doi.org/10.1021/acsomega.2c02675 (2022).
-
Dunnill, C. et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 14(1), 89–96. https://doi.org/10.1111/iwj.12557 (2017).
-
Hunt, M., Torres, M., Bachar-Wikstrom, E. & Wikstrom, J. D. Cellular and molecular roles of reactive oxygen species in wound healing. Commun. Biol. 7(1), 1534. https://doi.org/10.1038/s42003-024-07219-w (2024).
-
Wang, G. et al. The initiation of oxidative stress and therapeutic strategies in wound healing. Biomed. Pharm. Biomed. Pharma. 157, 114004. https://doi.org/10.1016/j.biopha.2022.114004 (2023).
-
Deng, L. et al. The role of oxidative stress and antioxidants in diabetic wound healing. Oxid. Med. Cell. Longev. 2021, 8852759. https://doi.org/10.1155/2021/8852759 (2021).
-
André-Lévigne, D., Modarressi, A., Pepper, M. S. & Pittet-Cuénod, B. Reactive oxygen species and NOX Enzymes are emerging as key players in cutaneous wound repair. Int. J. Mol. Sci. 18(10), 2149. https://doi.org/10.3390/ijms18102149 (2017).
-
Assar, S. et al. A Review of Immunomodulatory Effects of Fluoroquinolones. Immunol. Invest. 50(8), 1007–1026. https://doi.org/10.1080/08820139.2020.1797778 (2021).
-
Rais, N., Ved, A., Ahmad, R. & Parveen, A. Oxidative stress and diabetes mellitus: unravelling the intricate connection: A comprehensive review. J.Pharma. Res. Int. 36(1), 13–30. https://doi.org/10.9734/jpri/2024/v36i17493 (2024).
-
Waibel, F. W. A., Uçkay, I., Soldevila-Boixader, L., Sydler, C. & Gariani, K. Current knowledge of morbidities and direct costs related to diabetic foot disorders: a literature review. Front. Endocrinol. 14, 1323315. https://doi.org/10.3389/fendo.2023.1323315 (2024).
-
Caputo, W. J., Monterosa, P. & Beggs, D. antibiotic misuse in wound care: Can bacterial localization through fluorescence imaging help?. Diagnostics (Basel, Switzerland) 12(12), 3207. https://doi.org/10.3390/diagnostics12123207 (2022).
-
Rao, X., Huang, X., Zhou, Z. & Lin, X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinform. Biomath. 3(3), 71–85 (2013).
-
Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 53(D1), D672–D677. https://doi.org/10.1093/nar/gkae909 (2025).
-
Huang, F. et al. Analysis and prediction of protein stability based on interaction network, gene ontology, and KEGG pathway enrichment scores. Biochim. Biophys. Acta 1871(3), 140889. https://doi.org/10.1016/j.bbapap.2023.140889 (2023).
-
Szklarczyk, D. et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49(D1), D605–D612. https://doi.org/10.1093/nar/gkaa1074 (2021).
-
Lin, C., Liu, J. & Sun, H. Risk factors for lower extremity amputation in patients with diabetic foot ulcers: A meta-analysis. PLoS ONE 15(9), e0239236. https://doi.org/10.1371/journal.pone.0239236 (2020).
-
Boyko, E. J. et al. Risk of foot ulcer and lower-extremity amputation among participants in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 45(2), 357–364. https://doi.org/10.2337/dc21-1816 (2022).
-
Rossboth, S., Rossboth, B., Schoenherr, H., Lechleitner, M. & Oberaigner, W. Risk factors for diabetic foot complications among patients with type 2 diabetes in Austria-A registry-based retrospective cohort study. Endocrinol. Diabetes Metabolism 4(4), e00286. https://doi.org/10.1002/edm2.286 (2021).
-
Abuhay, H. W., Yenit, M. K. & Wolde, H. F. Incidence and predictor of diabetic foot ulcer and its association with change in fasting blood sugar among diabetes mellitus patients at referral hospitals in Northwest Ethiopia, 2021. PLoS ONE 17(10), e0274754. https://doi.org/10.1371/journal.pone.0274754 (2022).
-
Ghanbari, A., Nouri, M., & Darvishi, M. Evaluation of relationship between serum hemoglobin A1C level and severity of diabetic foot ulcers based on Wagner criteria. (2023).
-
Yin, K. et al. Unraveling shared risk factors for diabetic foot ulcer: a comprehensive Mendelian randomization analysis. BMJ Open Diabetes Res. Care 11(6), e003523. https://doi.org/10.1136/bmjdrc-2023-003523 (2023).
-
Suárez-Rivero, J. M. et al. Mitochondria and Antibiotics: For Good or for Evil?. Biomolecules 11(7), 1050. https://doi.org/10.3390/biom11071050 (2021).
-
Miller, M. & Singer, M. Do antibiotics cause mitochondrial and immune cell dysfunction? A literature review. J. Antimicrob. Chemother. 77(5), 1218–1227. https://doi.org/10.1093/jac/dkac025 (2022).
-
Kalghatgi, S. et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. Sci. Trans. Med. 5(192), 19ra285. https://doi.org/10.1126/scitranslmed.3006055 (2013).
-
Cai, F., Chen, W., Zhao, R. & Liu, Y. Mechanisms of Nrf2 and NF-κB pathways in diabetic wound and potential treatment strategies. Mol. Biol. Rep. 50(6), 5355–5367. https://doi.org/10.1007/s11033-023-08392-7 (2023).
-
Guillouzo, A. & Guguen-Guillouzo, C. Antibiotics-induced oxidative stress. Current Opinion Toxicol. 20, 23–28. https://doi.org/10.1016/j.cotox.2020.03.004 (2020).
-
Song, J. et al. The emerging role of immune cells and targeted therapeutic strategies in diabetic wounds healing. J. Inflamm. Res. 15, 4119–4138. https://doi.org/10.2147/JIR.S371939 (2022).
-
Liu, Y. et al. NRF2 signalling pathway: New insights and progress in the field of wound healing. J. Cellular Mol. Med. 25(13), 5857–5868. https://doi.org/10.1111/jcmm.16597 (2021).
-
Imdad, S., Lim, W., Kim, J. H. & Kang, C. Intertwined relationship of mitochondrial metabolism, gut microbiome and exercise potential. Int. J. Mol. Sci. 23(5), 2679. https://doi.org/10.3390/ijms23052679 (2022).
-
Bhatti, J. S. et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical. Biol. Med. 184, 114–134. https://doi.org/10.1016/j.freeradbiomed.2022.03.019 (2022).
-
Chen, Y., Zhang, Y., Jiang, M., Ma, H. & Cai, Y. HMOX1 as a therapeutic target associated with diabetic foot ulcers based on single-cell analysis and machine learning. Int. Wound J. 21(3), e14815. https://doi.org/10.1111/iwj.14815 (2024).
-
Cabral-Pacheco, G. A. et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci. 21(24), 9739. https://doi.org/10.3390/ijms21249739 (2020).
-
Shi, X., Li, H., Guo, F., Li, D. & Xu, F. Novel ray of hope for diabetic wound healing: Hydrogen sulfide and its releasing agents. J. Adv. Res. 58, 105–115. https://doi.org/10.1016/j.jare.2023.05.009 (2024).
-
Heydarpour, F. et al. Involvement of TGF-β and autophagy pathways in pathogenesis of diabetes: A comprehensive review on biological and pharmacological insights. Front. Pharmacol. 11, 498758. https://doi.org/10.3389/fphar.2020.498758 (2020).
-
Du, G., Chen, J., Zhu, X. & Zhu, Z. Bioinformatics analysis identifies TGF-β signaling pathway-associated molecular subtypes and gene signature in diabetic foot. iScience 27(3), 109094. https://doi.org/10.1016/j.isci.2024.109094 (2024).
-
Long, M. et al. An essential role of NRF2 in diabetic wound healing. Diabetes 65(3), 780–793. https://doi.org/10.2337/db15-0564 (2016).
-
Xiaojie, W. et al. Scarless wound healing: Current insights from the perspectives of TGF-β, KGF-1, and KGF-2. Cytokine Growth Factor Rev. 66, 26–37. https://doi.org/10.1016/j.cytogfr.2022.03.001 (2022).
-
Kamal, R., Awasthi, A., Pundir, M. & Thakur, S. Healing the diabetic wound: Unlocking the secrets of genes and pathways. Eur. J. Pharmacol. 975, 176645. https://doi.org/10.1016/j.ejphar.2024.176645 (2024).
-
Liu, W., Xu, Y. & Slaveykova, V. I. Oxidative stress induced by sub-lethal exposure to copper as a mediator in development of bacterial resistance to antibiotics. Sci. Tot. Environ. 860, 160516. https://doi.org/10.1016/j.scitotenv.2022.160516 (2023).
-
Khaliq, Y. & Zhanel, G. G. Fluoroquinolone-associated tendinopathy: a critical review of the literature. Clinic. Infect. Diseases: Official Public. Infect. Diseases Soc. America 36(11), 1404–1410. https://doi.org/10.1086/375078 (2003).
-
Liu, P. et al. Antibiotic-induced dysbiosis of the gut microbiota impairs gene expression in gut-liver axis of mice. Genes 14(7), 1423. https://doi.org/10.3390/genes14071423 (2023).
-
Kohanski, M. A., Dwyer, D. J. & Collins, J. J. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8(6), 423–435. https://doi.org/10.1038/nrmicro2333 (2010).
-
Liao, Y. et al. Antibiotic intervention exacerbated oxidative stress and inflammatory responses in SD rats under hypobaric hypoxia exposure. Free Radical. Biol. Med. 209(Pt 1), 70–83. https://doi.org/10.1016/j.freeradbiomed.2023.10.002 (2023).
