References
-
Wang, Y. et al. Fractionation of milk fat globule membrane enriched materials from caprine milk cream. Int. Dairy J. 144, 105698 (2023).
-
Jukkola, A., Partanen, R., Xiang, W., Heino, A. & Rojas, O. J. Food emulsifiers based on milk fat globule membranes and their interactions with calcium and casein phosphoproteins. Food Hydrocoll. 94, 30–37 (2019).
-
Arranz, E. & Corredig, M. Invited review: Milk phospholipid vesicles, their colloidal properties, and potential as delivery vehicles for bioactive molecules. J. Dairy Sci. 100, 4213–4222 (2017).
-
Livney, Y. D., Ruimy, E., Ye, A. M., Zhu, X. & Singh, H. A milkfat globule membrane-inspired approach for encapsulation of emulsion oil droplets. Food Hydrocoll. 65, 121–129 (2017).
-
Gallier, S., Acton, D., Garg, M. & Singh, H. Natural and processed milk and oil body emulsions: bioavailability, bioaccessibility and functionality. Food Struct. 13, 13–23 (2017).
-
Rashidinejad, A., Birch, E. J. & Everett, D. W. Interactions between milk fat globules and green tea catechins. Food Chem. 199, 347–355 (2016).
-
Holzmüller, W. & Kulozik, U. Technical difficulties and future challenges in isolating membrane material from milk fat globules in industrial settings—a critical review. Int. Dairy J. 61, 51–66 (2016).
-
Jukkola, A. & Rojas, O. J. Milk fat globules and associated membranes: colloidal properties and processing effects. Adv. Colloid Interface Sci. 245, 92–101 (2017).
-
Nie, C. et al. Structure, Biological functions, separation, properties, and potential applications of milk fat globule membrane (MFGM): a review. Nutrients 16, 587 (2024).
-
Ye, A., Singh, H., Taylor, M. W. & Anema, S. Characterization of protein components of natural and heat-treated milk fat globule membranes. Int. Dairy J. 12, 393–402 (2002).
-
Huang, Y. et al. Effects of various thermal treatments on interfacial composition and physical properties of bovine milk fat globules. Food Res. Int. 167, 112580 (2023).
-
Wiking, L., Gregersen, S. B., Hansen, S. F. & Hammershøj, M. Heat-induced changes in milk fat and milk fat globules and its derived effects on acid dairy gelation—a review. Int. Dairy J. 127, 105213 (2022).
-
Bermúdez-Aguirre, D., Mawson, R. & Barbosa-Cánovas, G. V. Microstructure of fat globules in whole milk after thermosonication treatment. J. Food Sci. 73, E325–E332 (2008).
-
Huppertz, T., Uniacke-Lowe, T. & Kelly, A. L. in Advanced Dairy Chemistry, Volume 2: Lipids (eds Paul L. H. McSweeney, Patrick F. Fox, & James A. O’Mahony) 133–167 (Springer International Publishing, 2020).
-
Verruck, S., Dantas, A. & Prudencio, E. S. Functionality of the components from goat’s milk, recent advances for functional dairy products development and its implications on human health. J. Funct. Foods 52, 243–257 (2019).
-
Yan, D. et al. Changes in caprine milk fat globule membrane proteins after heat treatment using a label-free proteomics technique. Foods 11, 2705 (2022).
-
Ma, Y., Zhang, L., Wu, Y. & Zhou, P. Changes in milk fat globule membrane proteome after pasteurization in human, bovine and caprine species. Food Chem. 279, 209–215 (2019).
-
Yang, L. et al. Surfactant charge tuning alters casein micelle structure and complexation behavior. Food Hydrocoll. 164, 111145 (2025).
-
Du, Z. et al. Study on internal structure of casein micelles in reconstituted skim milk powder. Int. J. Biol. Macromol. 224, 437–452 (2023).
-
Wang, C. et al. Proteomic characterization and comparison of milk fat globule membrane proteins of Saanen goat milk from 3 habitats in China using SWATH-MS technique. J. Dairy Sci. 106, 2289–2302 (2023).
-
Han, B., Zhang, L. & Zhou, P. Comparison of milk fat globule membrane protein profile among bovine, goat and camel milk based on label free proteomic techniques. Food Res. Int. 162, 112097 (2022).
-
Pisanu, S. et al. The sheep milk fat globule membrane proteome. J. Proteom. 74, 350–358 (2011).
-
Holzmüller, W. & Kulozik, U. Quantification of MFGM proteins in buttermilk and butter serum by means of a stain free SDS-PAGE method. J. Food Compos. Anal. 49, 102–109 (2016).
-
Affolter, M., Grass, L., Vanrobaeys, F., Casado, B. & Kussmann, M. Qualitative and quantitative profiling of the bovine milk fat globule membrane proteome. J. Proteom. 73, 1079–1088 (2010).
-
Sun, Y., Wang, C., Sun, X. & Guo, M. Comparative proteomics of whey and milk fat globule membrane proteins of Guanzhong goat and Holstein cow mature milk. J. Food Sci. 84, 244–253 (2019).
-
Stefferl, A. et al. Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis. J. Immunol. 165, 2859–2865 (2000).
-
Fong, B. Y. & Norris, C. S. Quantification of milk fat globule membrane proteins using selected reaction monitoring mass spectrometry. J. Agric. Food Chem. 57, 6021–6028 (2009).
-
Pan, Y. et al. Comparative analysis of interfacial composition and structure of fat globules in human milk and infant formulas. Food Hydrocoll. 124, 107290 (2022).
-
Lee, S. J. & Sherbon, J. W. Chemical changes in bovine milk fat globule membrane caused by heat treatment and homogenization of whole milk. J. Dairy Res. 69, 555–567 (2002).
-
Cao, F. et al. Insights on the structure of caseinate particles based on surfactants-induced dissociation. Food Hydrocoll. 104, 105766 (2020).
-
Hu, X. et al. How much can we trust polysorbates as food protein stabilizers—the case of bovine casein. Food Hydrocoll. 96, 81–92 (2019).
-
Miyazawa, T., Itaya, M., Burdeos, G. C., Nakagawa, K. & Miyazawa, T. A critical review of the use of surfactant-coated nanoparticles in nanomedicine and food nanotechnology. Int. J. Nanomed. 16, 3937–3999 (2021).
-
Kralova, I. & Sjöblom, J. Surfactants used in food industry: a review. J. Dispers. Sci. Technol. 30, 1363–1383 (2009).
-
Prasad, S. et al. Near UV-Visible electronic absorption originating from charged amino acids in a monomeric protein. Chem. Sci. 8, 5416–5433 (2017).
-
Kuipers, B. J. H. & Gruppen, H. Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography−mass spectrometry analysis. J. Agric. Food Chem. 55, 5445–5451 (2007).
-
Chandra Roy, M., Zhang, L., Liu, X. & Zhou, P. Investigation of caprine milk serum proteome and glycated proteome changes during heat treatment using robust ion mobility time-of-flight proteomic techniques. Int. Dairy J. 110, 104798 (2020).
-
Zhang, L., Zhou, R., Zhang, J. & Zhou, P. Heat-induced denaturation and bioactivity changes of whey proteins. Int. Dairy J. 123, 105175 (2021).
-
Anema, S. G. Heat-induced changes in caseins and casein micelles, including interactions with denatured whey proteins. Int. Dairy J. 122, 105136 (2021).
-
Ye, A., Singh, H., James Oldfield, D. & Anema, S. Kinetics of heat-induced association of β-lactoglobulin and α-lactalbumin with milk fat globule membrane in whole milk. Int. Dairy J. 14, 389–398 (2004).
-
Hansen, S. F., Nielsen, S. D., Rasmusen, J. T., Larsen, L. B. & Wiking, L. Disulfide bond formation is not crucial for the heat-induced interaction between β-lactoglobulin and milk fat globule membrane proteins. J. Dairy Sci. 103, 5874–5881 (2020).
-
Sun, Y., Oseliero, P. L. & Oliveira, C. L. P. alpha-Lactalbumin and sodium dodecyl sulfate aggregates: denaturation, complex formation and time stability. Food Hydrocoll. 62, 10–20 (2017).
-
Zhao, Y. et al. Milk fat globule membrane (MFGM) phospholipid-Whey protein interaction characterization and its effect on physicochemical, interfacial properties and evaluation of in vitro digestion of emulsions – Inspired by the MFGM. Food Hydrocoll. 155, 110173 (2024).
-
Ma, Q. et al. Interaction between whey protein and soy lecithin and its influence on physicochemical properties and in vitro digestibility of emulsion: A consideration for mimicking milk fat globule. Food Res. Int. 163, 112181 (2023).
-
Holt, C., Raynes, J. K. & Carver, J. A. Sequence characteristics responsible for protein-protein interactions in the intrinsically disordered regions of caseins, amelogenins, and small heat-shock proteins. Biopolymers 110, e23319 (2019).
-
Rico-Pasto, M., Zaltron, A., Davis, S. J., Frutos, S. & Ritort, F. Molten globule–like transition state of protein barnase measured with calorimetric force spectroscopy. Proc. Natl. Acad. Sci. 119, e2112382119 (2022).
-
Lou, K. et al. Molten globule-state protein structure: Perspectives from food processing applications. Food Res. Int. 198, 115318 (2024).
-
Sun, Y. et al. The role of hydrophobic interactions in the molten globule state of globular protein modulated by surfactants. Colloids Surf. B Biointerfaces 230, 113490 (2023).
-
Shen, Y. & Bax, A. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J. Biomol. NMR 38, 289–302 (2007).
-
Mulder, F. A. A. & Filatov, M. NMR chemical shift data and ab initio shielding calculations: emerging tools for protein structure determination. Chem. Soc. Rev. 39, 578–590 (2010).
-
Wang, Y. & Jardetzky, O. Investigation of the neighboring residue effects on protein chemical shifts. J. Am. Chem. Soc. 124, 14075–14084 (2002).
-
Hovjecki, M., Miloradovic, Z., Rac, V., Pudja, P. & Miocinovic, J. Influence of heat treatment of goat milk on casein micelle size, rheological and textural properties of acid gels and set type yoghurts. J. Texture Stud. 51, 680–687 (2020).
-
Minić, D. A. P. et al. Goat milk proteins enriched with Agaricus blazei Murrill ss. Heinem extracts: electrophoretic, FTIR, DLS and microstructure characterization. Food Chem. 402, 134299 (2023).
-
Postelmans, A., Aernouts, B., Jordens, J., Van Gerven, T. & Saeys, W. Milk homogenization monitoring: fat globule size estimation from scattering spectra of milk. Innov. Food Sci. Emerg. Technol. 60, 102311 (2020).
-
Luo, J., Wang, Y., Guo, H. & Ren, F. Effects of size and stability of native fat globules on the formation of milk gel induced by rennet. J. Food Sci. 82, 670–678 (2017).
-
Liang, L., Zhang, X., Wang, X., Jin, Q. & McClements, D. J. Influence of dairy emulsifier type and lipid droplet size on gastrointestinal fate of model emulsions: in vitro digestion study. J. Agric. Food Chem. 66, 9761–9769 (2018).
-
Holzmüller, W., Gmach, O., Griebel, A. & Kulozik, U. Casein precipitation by acid and rennet coagulation of buttermilk: Impact of pH and temperature on the isolation of milk fat globule membrane proteins. Int. Dairy J. 63, 115–123 (2016).
-
Michalski, M.-C., Michel, F. & Geneste, C. Appearance of submicronic particles in the milk fat globule size distribution upon mechanical treatments. Le. Lait. 82, 193–208 (2002).
-
Corredig, M., Nair, P. K., Li, Y., Eshpari, H. & Zhao, Z. Invited review: understanding the behavior of caseins in milk concentrates. J. Dairy Sci. 102, 4772–4782 (2019).
-
Anema, S. G. & Li, Y. Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk. J. Agric Food Chem. 51, 1640–1646 (2003).
-
Liu, Y. et al. Impact of fatty acid carbon chain length and protein composition on physicochemical and digestive properties of MFGM contained emulsions. Food Sci. Nutr. 13, e70220 (2025).
-
Michalski, M.-C., Michel, F., Sainmont, D. & Briard, V. Apparent ζ-potential as a tool to assess mechanical damages to the milk fat globule membrane. Colloids Surf. B Biointerfaces 23, 23–30 (2002).
-
Gülseren, İ, Alexander, M. & Corredig, M. Probing the colloidal properties of skim milk using acoustic and electroacoustic spectroscopy. Effect of concentration, heating and acidification. J. Colloid Interface Sci. 351, 493–500 (2010).
-
Sun, Y., Roos, Y. H. & Miao, S. Changes in milk fat globules and membrane proteins prepared from pH-adjusted bovine raw milk. Foods 11, 4107 (2022).
-
Tholstrup Sejersen, M. et al. Zeta potential of pectin-stabilised casein aggregates in acidified milk drinks. Int. Dairy J. 17, 302–307 (2007).
-
Han, R. et al. Distribution and variation in proteins of casein micellar fractions response to heat-treatment from five dairy species. Food Chem. 365, 130640 (2021).
-
Binks, B. P. Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 21–41 (2002).
-
Silva, N. N., Bahri, A., Guyomarc’h, F., Beaucher, E. & Gaucheron, F. AFM study of casein micelles cross-linked by genipin: effects of acid pH and citrate. Dairy Sci. Technol. 95, 75–86 (2015).
-
Chen, M., Sagis, L. M. C. & Sun, Q. Emulsification and dilatational surface rheology of ultrasonicated milk fat globule membrane (MFGM) materials. LWT 133, 110094 (2020).
-
Miller, R., Aksenenko, E. V. & Fainerman, V. B. Dynamic interfacial tension of surfactant solutions. Adv. Colloid Interface Sci. 247, 115–129 (2017).
-
Zarif, B., Shabbir, S., Shahid, R., Noor, T. & Imran, M. Proteosomes based on milk phospholipids and proteins to enhance the stability and bioaccessibility of β-carotene. Food Chem. 429, 136841 (2023).
-
Qin, Y. et al. Comparative study on the microstructure and functional properties of casein in goat milk processed by different methods. Int. J. Food Sci. Technol. 56, 1682–1689 (2021).
-
Yue, M., Huang, M., Zhu, Z., Huang, T. & Huang, M. Effect of ultrasound assisted emulsification in the production of Pickering emulsion formulated with chitosan self-assembled particles: stability, macro, and micro rheological properties. LWT 154, 112595 (2022).
-
Ma, Y. et al. Structural modification of whey protein isolate via electrostatic complexation with Tremella polysaccharides and its effect on emulsion stability at pH 4.5. Int. J. Biol. Macromol. 297, 139870 (2025).
-
Zhao, S. et al. The stability of three different citrus oil-in-water emulsions fabricated by spontaneous emulsification. Food Chem. 269, 577–587 (2018).
-
Liu, J. et al. Investigation into the influence of droplet size on the stability of diesel emulsions based on multiple light scattering. J. Mol. Liq. 390, 123182 (2023).
-
Yu, J., Wang, X. -y, Li, D., Wang, L. -j & Wang, Y. Development of soy protein isolate emulsion gels as extrusion-based 3D food printing inks: effect of polysaccharides incorporation. Food Hydrocoll. 131, 107824 (2022).
-
Gräwert, T. W. & Svergun, D. I. Structural modeling using solution small-angle X-ray scattering (SAXS). J. Mol. Biol. 432, 3078–3092 (2020).
-
Ingham, B. et al. Revisiting the interpretation of casein micelle SAXS data. Soft Matter 12, 6937–6953 (2016).
-
Pedersen, J. S., Møller, T. L., Raak, N. & Corredig, M. A model on an absolute scale for the small-angle X-ray scattering from bovine casein micelles. Soft Matter 18, 8613–8625 (2022).
-
Chen, R. et al. Developments in small-angle X-ray scattering (SAXS) for characterizing the structure of surfactant-macromolecule interactions and their complex. Int. J. Biol. Macromol. 251, 126288 (2023).
-
Sun, Y. et al. Sulfate dodecyl sodium-induced stability of a model intrinsically disordered protein, bovine casein. Food Hydrocoll. 82, 19–28 (2018).
-
Ruiz-Peña, M., Oropesa-Nuñez, R., Pons, T., Louro, S. R. W. & Pérez-Gramatges, A. Physico-chemical studies of molecular interactions between non-ionic surfactants and bovine serum albumin. Colloids Surf. B Biointerfaces 75, 282–289 (2010).
-
Mustan, F. et al. Interplay between bulk aggregates, surface properties and foam stability of nonionic surfactants. Adv. Colloid Interface Sci. 302, 102618 (2022).
-
Ye, A., Cui, J., Dalgleish, D. & Singh, H. Effect of homogenization and heat treatment on the behavior of protein and fat globules during gastric digestion of milk. J. Dairy Sci. 100, 36–47 (2017).
-
Micsonai, A. et al. BeStSel: webserver for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Res. 50, W90–W98 (2022).
-
Li, Y. et al. Exploration of structure-activity relationship between IgG1 and IgE binding ability and spatial conformation in ovomucoid with pulsed electric field treatment. LWT 141, 110891 (2021).
-
Liu, G. et al. Upgraded SSRF BL19U2 beamline for small-angle X-ray scattering of biological macromolecules in solution. J. Appl.Crystallogr. 51, https://doi.org/10.1107/S160057671801316X (2018).
-
Hopkins, J. B., Gillilan, R. E. & Skou, S. BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J. Appl. Crystallogr. 50, 1545–1553 (2017).
-
Franke, D. et al. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Crystallogr. 50, 1212–1225 (2017).
-
Svergun, D. I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999).
-
Grant, T. D. Ab initio electron density determination directly from solution scattering data. Nat. Methods 15, 191–193 (2018).
