Data availability
The original datasets are presented in the Supplementary files (Supplementary data). The data from this study are available from the corresponding author, Tsan-Yu Chiu, at qiucanyu@genomics.cn.
Abbreviations
- AP2:
-
APETALA2
- F5H:
-
Ferulate 5-hydroxylase
- PAL1 :
-
Phenylalanine ammonia-lyase 1
- 4CL :
-
4-Coumarate-CoA ligase
- LAC :
-
Laccase
- CO :
-
Constans
- PHYA :
-
Phytochrome A
- LHY :
-
Late elongated hypocotyl
- GA2OX1 :
-
Gibberellin 2-oxidase 1
- GASA1 :
-
Gibberellic acid-stimulated arabidopsis 1
- GA20OX1 :
-
Gibberellin 20-oxidase 1
- SUS6/SUS1 :
-
Sucrose synthase 6/1
- Amy2 :
-
Alpha-amylase 2
- INVA :
-
Alkaline/Neutral invertase A
- AGL62 :
-
Agamous-like 62
- SOC1 :
-
Uppressor of overexpression of constans 1
- MADS8 :
-
MCM1-agamous-deficiens-SRF 8
- ADC :
-
Arginine decarboxylase
- SAMDC :
-
S-adenosyl methionine decarboxylase
- VRN1 :
-
Vernalization 1
- FLC :
-
Flowering locus C
- C4H :
-
Cinnamate 4-hydroxylase
- COMT :
-
Caffeic acid O-methyltransferase
- CCoAOMT:
-
Caffeoyl-CoA O-methyltransferase
- MYB:
-
MYeloblastosis
- bHLH:
-
Basic helix-loop-helix
- TPSs:
-
Terpenoid synthases
- ACCs:
-
Acyl-CoA carboxylases
- PKSs:
-
Polyketide synthases
- PTs:
-
Prenyltransferases
- UP2K:
-
Upstream 2-kb region
- ATR2 :
-
Arabidopsis thaliana cytochrome P450 reductase 2
- BY4741:
-
Baker’s yeast strain BY4741
- SD-URA:
-
Synthetic dropout medium without uracil
- LC-MS/MS:
-
Liquid chromatography-mass spectrometry/mass spectrometry
- ESI:
-
Electrospray ionization
- EVO C18:
-
Enhanced vortex organic C18
- CDS:
-
Coding sequence
- BD:
-
Binding domain
- Y1H:
-
Yeast one-hybrid
- SD-Leu:
-
Synthetic dropout medium without leucine
- AbA:
-
Aureobasidin A
- PCR:
-
Polymerase chain reaction
- LUC:
-
Luciferase reporter gene
- TF:
-
Transcription factor
- LB:
-
Luria-bertani medium
- MES:
-
2-(N-Morpholino)ethanesulfonic acid
- EP tube:
-
Eppendorf tube
- CCD:
-
Charge-coupled device
- REN:
-
Renilla luciferase (Internal Control)
- C4H :
-
Cinnamate 4-hydroxylase
- C3H :
-
p-Coumarate 3-hydroxylase
- HCT :
-
Hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase
- CCoAOMT :
-
Caffeoyl-CoA 3-O-methyltransferase
- CCR :
-
Cinnamoyl-CoA reductase
- CAD :
-
Cinnamyl alcohol dehydrogenase
- EF:
-
Early flowering stage
- NG:
-
Normal growth stage
- CYP84:
-
Cytochrome P450 family 84
- DREB:
-
Dehydration-responsive element binding protein
- ERF:
-
Ethylene-responsive factor
- RAV:
-
Related to ABI3/VP1
- ERE:
-
Ethylene-responsive element
- ABRE:
-
Abscisic acid responsive element
- DRE/CRT:
-
Dehydration-responsive element/CRepeat element
References
-
Zhang, H. Y., Bi, W. G., Yu, Y. & Liao, W. B. Angelica sinensis (Oliv.) Diels in China: Distribution, cultivation, utilization and variation. Genetic Res. Crop Evol. 59(4), 607–613. https://doi.org/10.1007/s10722-012-9795-9 (2012).
-
Zhao, K. J. et al. Molecular genetic and chemical assessment of radix Angelica (Danggui) in China. J. Agric. Food Chem. 51(9), 2576–2583. https://doi.org/10.1021/jf026178h (2003).
-
Li, D., Rui, Y. xin, Guo, S. duo, Luan, F., Liu, R., & Zeng, N. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. In Life Sciences Elsevier Inc. 284 https://doi.org/10.1016/j.lfs.2021.119921 (2021)
-
Li, J. et al. Integrated transcriptomics and metabolites at different growth stages reveals the regulation mechanism of bolting and flowering of Angelica sinensis. Plant Biol. 23(4), 574–582. https://doi.org/10.1111/plb.13249 (2021).
-
Li, M., Li, J., Wei, J. & Paré, P. W. Transcriptional controls for early bolting and flowering in angelica sinensis. Plants https://doi.org/10.3390/plants10091931 (2021).
-
Yang, C., Yang, W., Chen, Y., Cheng, Q., & Chen, W. Improving renoprotective effects by adding piperazine ferulate and angiotensin receptor blocker in diabetic nephropathy: a meta-analysis of randomized controlled trials. In International Urology and Nephrology Springer Science and Business Media B.V. 54(2):299-307 https://doi.org/10.1007/s11255-021-02927-2 (2022)
-
Han, X. et al. The chromosome-level genome of female ginseng (Angelica sinensis) provides insights into molecular mechanisms and evolution of coumarin biosynthesis. Plant J. 112(5), 1224–1237. https://doi.org/10.1111/tpj.16007 (2022).
-
Li, M., Cui, X., Jin, L., Li, M. & Wei, J. Bolting reduces ferulic acid and flavonoid biosynthesis and induces root lignification in Angelica sinensis. Plant Physiol. Biochem. 170, 171–179. https://doi.org/10.1016/j.plaphy.2021.12.005 (2022).
-
Li, S. et al. Integrating genomic and multiomic data for Angelica sinensis provides insights into the evolution and biosynthesis of pharmaceutically bioactive compounds. Commun. Biol. https://doi.org/10.1038/s42003-023-05569-5 (2023).
-
Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience https://doi.org/10.1093/gigascience/gix120 (2018).
-
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 (2012).
-
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12(1), 323. https://doi.org/10.1186/1471-2105-12-323 (2011).
-
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).
-
Bailey, T. L. et al. MEME suite: tools for motif discovery and searching. Nucleic Acids Res. https://doi.org/10.1093/nar/gkp335 (2009).
-
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).
-
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15), 1972–1973. https://doi.org/10.1093/bioinformatics/btp348 (2009).
-
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37(5), 1530–1534. https://doi.org/10.1093/molbev/msaa015 (2020).
-
Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8(1), 28–36. https://doi.org/10.1111/2041-210X.12628 (2017).
-
Wickham, H. ggplot2 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-24277-4.
-
Guo, Y. et al. YeastFab: The design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Nucleic Acids Res. 43(13), e88. https://doi.org/10.1093/nar/gkv464 (2015).
-
Hellens, R. P. et al. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods https://doi.org/10.1186/1746-4811-1-13 (2005).
-
Sakuma, Y. et al. DNA-binding specificity of the ERF/AP2 domain of arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290(3), 998–1009. https://doi.org/10.1006/bbrc.2001.6299 (2002).
-
Guo, H. & Ecker, J. R. The ethylene signaling pathway: new insights. Curr. Opinion Plant Biol. 7(1), 40–49. https://doi.org/10.1016/j.pbi.2003.11.011 (2004).
-
Shinozaki, K. & Yamaguchi-Shinozaki, K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opinion Plant Biol. 3(3), 217–223. https://doi.org/10.1016/S1369-5266(00)80068-0 (2000).
-
Yu, G. et al. Transcriptome and digital gene expression analysis unravels the novel mechanism of early flowering in Angelica sinensis. Sci. Rep. https://doi.org/10.1038/s41598-019-46414-2 (2019).
-
De Boer, K. et al. Apetala2/Ethylene response factor and basic helix–loop–helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J. 66(6), 1053–1065. https://doi.org/10.1111/j.1365-313X.2011.04566.x (2011).
-
Shoji, T., Kajikawa, M. & Hashimoto, T. Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22(10), 3390–3409. https://doi.org/10.1105/tpc.110.078543 (2010).
-
Paul, P. et al. A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytol. 213(3), 1107–1123. https://doi.org/10.1111/nph.14252 (2017).
-
Udomsom, N. et al. Function of AP2/ERF Transcription Factors Involved in the Regulation of Specialized Metabolism in Ophiorrhiza pumila Revealed by Transcriptomics and Metabolomics. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.01861 (2016).
-
Van Der Fits, L., & Memelink, J. (n.d.). ORCA3, a Jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. www.sciencemag.org
-
van der Fits, L. & Memelink, J. ORCA3, a Jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289(5477), 295–297. https://doi.org/10.1126/science.289.5477.295 (2000).
-
Lu, X. et al. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol. 198(4), 1191–1202. https://doi.org/10.1111/nph.12207 (2013).
-
Yu, Z.-X. et al. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in artemisia annua L. Mol. Plant 5(2), 353–365. https://doi.org/10.1093/mp/ssr087 (2012).
-
Cárdenas, P. D. et al. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat. Commun. 7(1), 10654. https://doi.org/10.1038/ncomms10654 (2016).
-
Nakayasu, M. et al. JRE4 is a master transcriptional regulator of defense-related steroidal glycoalkaloids in tomato. Plant J. 94(6), 975–990. https://doi.org/10.1111/tpj.13911 (2018).
-
Thagun, C. et al. Jasmonate-responsive ERF transcription factors regulate steroidal glycoalkaloid biosynthesis in tomato. Plant Cell Physiol. 57(5), 961–975. https://doi.org/10.1093/pcp/pcw067 (2016).
-
Springer, N., de León, N., & Grotewold, E. (2019). Challenges of Translating Gene Regulatory Information into Agronomic Improvements. In Trends in Plant Science (Vol. 24, Issue 12, pp. 1075–1082). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2019.07.004
Acknowledgements
Supported by the National Key Research and Development Program of China (Grant No.2022YFD1201600). We acknowledge Qi Zhou did the Yeast-1-hybrid, Shujie Wang and Feng Zhang did the F5H enzymatic analysis. Xin Jin, Meng Xu., Shiming Li and Kang Yu performed the transcriptome and phylogenetic analysis.
Funding
This study was financially supported by HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China. The funder did not participate in the designing, performing, or reporting of the current study.
Ethics declarations
Competing interests
The authors declare no competing interests.
Consent for publication
All data analyzed in this study were derived from publicly available datasets, with corresponding SRA accession numbers detailed in Supplementary Table 1.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Wu, Z., Fang, J., Liu, Q. et al. AsAP2 transcriptionally activates ferulate 5-hydroxylase, diverting ferulic acid metabolism toward lignin biosynthesis in Angelica sinensis.. Sci Rep (2025). https://doi.org/10.1038/s41598-025-33378-9
-
Received:
-
Accepted:
-
Published:
-
DOI: https://doi.org/10.1038/s41598-025-33378-9
