Effects of intravenous lipid emulsions on Jurkat cells assessed using label-free deformability cytometry

effects-of-intravenous-lipid-emulsions-on-jurkat-cells-assessed-using-label-free-deformability-cytometry
Effects of intravenous lipid emulsions on Jurkat cells assessed using label-free deformability cytometry

References

  1. Cai, W. et al. Biological and clinical aspects of an olive oil-based lipid emulsion—A review. Nutrients 10, 776. https://doi.org/10.3390/nu10060776 (2018).

    Google Scholar 

  2. Nandivada, P. et al. Treatment of parenteral nutrition-associated liver disease: The role of lipid emulsions. Adv. Nutr. 4, 711–717. https://doi.org/10.3945/an.113.004770 (2013).

    Google Scholar 

  3. Wirtitsch, M. et al. Effect of different lipid emulsions on the immunological function in humans: A systematic review with meta-analysis. Clin. Nutr. 26, 302–313. https://doi.org/10.1016/j.clnu.2007.02.001 (2007).

    Google Scholar 

  4. Hecker, M. et al. Immunomodulation by lipid emulsions in pulmonary inflammation: A randomized controlled trial. Crit. Care https://doi.org/10.1186/s13054-015-0933-6 (2015).

    Google Scholar 

  5. Notz, Q. et al. Omega-6 sparing effects of parenteral lipid emulsions—An updated systematic review and meta-analysis on clinical outcomes in critically ill patients. Crit Care 26, 23. https://doi.org/10.1186/s13054-022-03896-3 (2022).

    Google Scholar 

  6. Manzanares, W., Langlois, P. L., Dhaliwal, R., Lemieux, M. & Heyland, D. K. Intravenous fish oil lipid emulsions in critically ill patients: An updated systematic review and meta-analysis. Crit. Care 19, 167. https://doi.org/10.1186/s13054-015-0888-7 (2015).

    Google Scholar 

  7. Cury-Boaventura, M. F., Gorjão, R., De Lima, T. M., Newsholme, P. & Curi, R. Comparative toxicity of oleic and linoleic acid on human lymphocytes. Life Sci. 78, 1448–1456. https://doi.org/10.1016/j.lfs.2005.07.038 (2006).

    Google Scholar 

  8. Cury-Boaventura, M. F., Pompéia, C. & Curi, R. Comparative toxicity of oleic acid and linoleic acid on Jurkat cells. Clin. Nutr. 23, 721–732. https://doi.org/10.1016/j.clnu.2003.12.004 (2004).

    Google Scholar 

  9. Cury-Boaventura, M. F., CristineKanunfre, C., Gorjão, R., Martins de Lima, T. & Curi, R. Mechanisms involved in Jurkat cell death induced by oleic and linoleic acids. Clin. Nutr. 25, 1004–1014. https://doi.org/10.1016/j.clnu.2006.05.008 (2006).

    Google Scholar 

  10. Candiloro, F. et al. Influence of different lipid emulsions on specific immune cell functions in head and neck cancer patients receiving supplemental parenteral nutrition: An exploratory analysis. Nutrition 86, 111178. https://doi.org/10.1016/j.nut.2021.111178 (2021).

    Google Scholar 

  11. Driscoll, D. F. & Bistrian, B. R. Cytokine release syndrome associated with immune-modulating chemotherapy: Potential mitigating role of intravenous omega-3 fatty acid triglycerides. Cancer Rep. https://doi.org/10.1002/cnr2.70025 (2024).

    Google Scholar 

  12. RialSaborido, J., Völkl, S., Aigner, M., Mackensen, A. & Mougiakakos, D. Role of CAR T Cell Metabolism for Therapeutic Efficacy. Cancers (Basel) https://doi.org/10.3390/cancers14215442 (2022).

    Google Scholar 

  13. Mamo, T., Dreyzin, A., Stroncek, D. & McKenna, D. H. Emerging biomarkers for monitoring chimeric antigen receptor T-cell therapy. Clin. Chem. 70, 116–127. https://doi.org/10.1093/clinchem/hvad179 (2024).

    Google Scholar 

  14. Noor, M., Noor, A. M., Masuda, T. & Arai, F. Microfluidic device for rapid investigation of the deformability of leukocytes in whole blood samples. ROBOMECH J. https://doi.org/10.1186/s40648-019-0153-y (2020).

    Google Scholar 

  15. Urbanska, M. et al. A comparison of microfluidic methods for high-throughput cell deformability measurements. Nat. Methods 17, 587–593. https://doi.org/10.1038/s41592-020-0818-8 (2020).

    Google Scholar 

  16. Zhuang, C., Gould, J. E., Enninful, A., Shao, S. & Mak, M. Biophysical and mechanobiological considerations for T-cell-based immunotherapy. Trends Pharmacol. Sci. 44, 366–378. https://doi.org/10.1016/j.tips.2023.03.007 (2023).

    Google Scholar 

  17. Otto, O. et al. Real-time deformability cytometry: On-the-fly cell mechanical phenotyping. Nat. Methods 12, 199–202. https://doi.org/10.1038/nmeth.3281 (2015).

    Google Scholar 

  18. Fajdiga, L., Zemljič, Š, Kokalj, T. & Derganc, J. Shear flow deformability cytometry: A microfluidic method advancing towards clinical use—A review. Anal. Chim. Acta 1355, 343894. https://doi.org/10.1016/j.aca.2025.343894 (2025).

    Google Scholar 

  19. Toepfner, N. et al. Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood. Elife https://doi.org/10.7554/eLife.29213.001 (2018).

    Google Scholar 

  20. Doan, M. et al. Diagnostic potential of imaging flow cytometry. Trends Biotechnol. 36, 649–652. https://doi.org/10.1016/j.tibtech.2017.12.008 (2018).

    Google Scholar 

  21. Tuljak, M., Lajevec, D., Štanc, R., ZemljičJokhadar, Š & Derganc, J. Low-cost programable stroboscopic illumination with sub-microsecond pulses for high-throughput microfluidic applications. HardwareX https://doi.org/10.1016/j.ohx.2022.e00367 (2022).

    Google Scholar 

  22. Urbanska, M., Rosendahl, P., Kräter, M. & Guck, J. High-throughput single-cell mechanical phenotyping with real-time deformability cytometry. Methods Cell Biol. 147, 175–198. https://doi.org/10.1016/bs.mcb.2018.06.009 (2018).

    Google Scholar 

  23. Repas, J., Peternel, L., Sourij, H. & Pavlin, M. Low glucose availability potentiates the effects of metformin on model T cell activation and exhaustion markers in vitro. Front. Endocrinol. https://doi.org/10.3389/fendo.2023.1216193 (2023).

    Google Scholar 

  24. Verlengia, R. et al. Comparative effects of eicosapentaenoic acid and docosahexaenoic acid on proliferation, cytokine production, and pleiotropic gene expression in Jurkat cells. J. Nutr. Biochem. 15, 657–665. https://doi.org/10.1016/j.jnutbio.2004.04.008 (2004).

    Google Scholar 

  25. Hidalgo, M. A., Carretta, M. D. & Burgos, R. A. Long chain fatty acids as modulators of immune cells function: Contribution of FFA1 and FFA4 receptors. Front. Physiol. https://doi.org/10.3389/fphys.2021.668330 (2021).

    Google Scholar 

  26. Liu, Y. et al. The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase A2 via GPR120 receptor to produce prostaglandin E2 and plays an anti-inflammatory role in macrophages. Immunology 143, 81–95. https://doi.org/10.1111/imm.12296 (2014).

    Google Scholar 

  27. de Jong, A. J., Kloppenburg, M., Toes, R. E. M. & Ioan-Facsinay, A. Fatty acids, lipid mediators, and T-cell function. Front. Immunol. 5, 483. https://doi.org/10.3389/fimmu.2014.00483 (2014).

    Google Scholar 

  28. Rosa Neto, J. C. et al. The immunometabolic roles of various fatty acids in macrophages and lymphocytes. Int. J. Mol. Sci. 22, 8460. https://doi.org/10.3390/ijms22168460 (2021).

    Google Scholar 

  29. Shaikh, S. R. & Edidin, M. Polyunsaturated fatty acids, membrane organization, T cells, and antigen presentation. Am. J. Clin. Nutr. 84, 1277–1289. https://doi.org/10.1093/ajcn/84.6.1277 (2006). 

    Google Scholar 

  30. Shaikh, S. R. Biophysical and biochemical mechanisms by which dietary N-3 polyunsaturated fatty acids from fish oil disrupt membrane lipid rafts. J. Nutr. Biochem. 23, 101–105. https://doi.org/10.1016/j.jnutbio.2011.07.001 (2012).

    Google Scholar 

  31. Schuchardt, J. P. et al. Omega-3 supplementation changes the physical properties of leukocytes but not erythrocytes in healthy individuals: an exploratory trial. Prostaglandins Leukot Essent Fatty Acids 102636, 202. https://doi.org/10.1016/j.plefa.2024.102636 (2024).

    Google Scholar 

  32. Gyan, E. et al. Adjunction of a fish oil emulsion to cytarabine and daunorubicin induction chemotherapy in high-risk AML. Sci. Rep. 12, 9748. https://doi.org/10.1038/s41598-022-13626-y (2022).

    Google Scholar 

  33. Picou, F. et al. n-3 Polyunsaturated fatty acids induce acute myeloid leukemia cell death associated with mitochondrial glycolytic switch and Nrf2 pathway activation. Pharmacol. Res. 136, 45–55. https://doi.org/10.1016/j.phrs.2018.08.015 (2018).

    Google Scholar 

  34. Hishikawa, D., Valentine, W. J., Iizuka-Hishikawa, Y., Shindou, H. & Shimizu, T. Metabolism and functions of docosahexaenoic acid-containing membrane glycerophospholipids. FEBS Lett. 591, 2730–2744. https://doi.org/10.1002/1873-3468.12825 (2017).

    Google Scholar 

  35. Bruno, M. J., Koeppe II, R. E., Andersen, O. S. Docosahexaenoic acid alters bilayer elastic properties. PNAS. 104, 9638-9643. https://doi.org/10.1073/pnas.0701015104 (2007).

  36. Fan, Y. Y. et al. Remodelling of primary human CD4+ T cell plasma membrane order by n-3 PUFA. Br. J. Nutr. 119, 163–175. https://doi.org/10.1017/S0007114517003385 (2018).

    Google Scholar 

  37. Mason, R. P., Jacob, R. F., Shrivastava, S., Sherratt, S. C. R. & Chattopadhyay, A. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes. Biochim. Biophys. Acta Biomembr. 1858, 3131–3140. https://doi.org/10.1016/j.bbamem.2016.10.002 (2016).

    Google Scholar 

  38. Kräter, M. et al. AIDeveloper: Deep learning image classification in life science and beyond. Adv. Sci. 8, 2003743. https://doi.org/10.1002/advs.202003743 (2021).

    Google Scholar 

  39. Chen, J. et al. Automated cytometric gating with human-level performance using bivariate segmentation. Nat. Commun. 16, 1576. https://doi.org/10.1038/s41467-025-56622-2 (2025).

    Google Scholar 

  40. Combs, C. et al. Deep learning assisted mechanotyping of individual cells through repeated deformations and relaxations in undulating channels. Biomicrofluidics https://doi.org/10.1063/5.0077432 (2022).

    Google Scholar 

  41. Kampen, P. J. T. et al. Classification of fetal and adult red blood cells based on hydrodynamic deformation and deep video recognition. Biomed Microdevices https://doi.org/10.1007/s10544-023-00688-6 (2024).

    Google Scholar 

  42. Zhou, Z. et al. High-throughput adjustable deformability cytometry utilizing elasto-inertial focusing and virtual fluidic channel. Lab Chip 23, 4528–4539. https://doi.org/10.1039/d3lc00591g (2023).

    Google Scholar 

  43. Manzo, T. et al. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic cd8+ t cells. J. Exp. Med. https://doi.org/10.1084/jem.20191920 (2020).

    Google Scholar 

  44. Tang, Y., Chen, Z., Zuo, Q. & Kang, Y. Regulation of CD8+ T cells by lipid metabolism in cancer progression. Cell Mol. Immunol. https://doi.org/10.1038/s41423-024-01224-z (2024).

    Google Scholar 

  45. Howie, D., Ten Bokum, A., Necula, A. S., Cobbold, S. P. & Waldmann, H. The role of lipid metabolism in T lymphocyte differentiation and survival. Front. Immunol. 8, 1949. https://doi.org/10.3389/fimmu.2017.01949 (2018).

    Google Scholar 

  46. Bosma, M. et al. Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1841, 1648–1655. https://doi.org/10.1016/j.bbalip.2014.09.012 (2014).

    Google Scholar 

  47. Zhang, W. et al. Lipid Droplets, the central hub integrating cell metabolism and the immune system. Front. Physiol. https://doi.org/10.3389/fphys.2021.746749 (2021).

    Google Scholar 

  48. Nanhuck, R. M., Doublet, A. & Yaqoob, P. Effects of lipid emulsions on lipid body formation and eicosanoid production by human peripheral blood mononuclear and polymorphonuclear cells. Clin. Nutr. 28, 556–564. https://doi.org/10.1016/j.clnu.2009.05.008 (2009).

    Google Scholar 

  49. Noureddine, N., et al. Size of lipid emulssion droplets influences metabolism. Biochem. Biophys. Res. Commun. 733, 150680. https://doi.org/10.1016/j.bbrc.2024.150680 (2024).

  50. Waugh, R. E., Lomakina, E., Amitrano, A. & Kim, M. Activation effects on the physical characteristics of T lymphocytes. Front. Bioeng. Biotechnol. 11, 1175570. https://doi.org/10.3389/fbioe.2023.1175570 (2023).

    Google Scholar 

Download references