References
-
Lomwongsopon, P. & Varrone, C. Critical review on the progress of plastic bioupcycling technology as a potential solution for sustainable plastic waste management. Polymers. 14, 4996 (2022).
-
Amobonye, A., Bhagwat, P., Singh, S. & Pillai, S. Plastic biodegradation: frontline microbes and their enzymes. Sci. Total Environ. 759, 143536 (2021).
-
Lee, G. H. et al. Biotechnological plastic degradation and valorization using systems metabolic engineering. Int. J. Mol. Sci. 24, 15181 (2023).
-
Tiso, T. et al. The metabolic potential of plastics as biotechnological carbon sources—review and targets for the future. Metab. Eng. 71, 77–98 (2022).
-
Carlsen, L. & Bruggemann, R. The 17 United Nations’ sustainable development goals: a status by 2020. Int. J. Sustain. Dev. World Ecol. 29, 219–229 (2022).
-
Gilani, I. E., Sayadi, S., Zouari, N. & Al-Ghouti, M. A. Plastic waste impact and biotechnology: exploring polymer degradation, microbial role, and sustainable development implications. Bioresour. Technol. Rep. 24, 101606 (2023).
-
Lee, S., Lee, Y. R., Kim, S. J., Lee, J.-S. & Min, K. Recent advances and challenges in the biotechnological upcycling of plastic wastes for constructing a circular bioeconomy. Chem. Eng. J. 454, 140470 (2023).
-
Haider, T. P., Völker, C., Kramm, J., Landfester, K. & Wurm, F. R. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 58, 50–62 (2019).
-
Pathak, V. M. Review on the current status of polymer degradation: a microbial approach. Bioresour. Bioprocess. 4, 1–31 (2017).
-
Andler, R. et al. Current progress on the biodegradation of synthetic plastics: from fundamentals to biotechnological applications. Rev. Environ. Sci. Bio/Technol. 21, 829–850 (2022).
-
Ali, S. S. et al. Plastic wastes biodegradation: mechanisms, challenges and future prospects. Sci. Total Environ. 780, 146590 (2021).
-
Nugroho, R. A. A., Alhikami, A. F. & Wang, W.-C. Thermal decomposition of polypropylene plastics through vacuum pyrolysis. Energy 277, 127707 (2023).
-
Grigoriadi, K. et al. The role of recycling in UV and thermal ageing of polypropylene block copolymer. Polym. Degrad. Stab. 222, 110693 (2024).
-
Auta, H. S., Emenike, C. U., Jayanthi, B. & Fauziah, S. H. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar. Pollut. Bull. 127, 15–21 (2018).
-
Shimpi, N., Borane, M., Mishra, S., Kadam, M. & Sonawane, S. Biodegradation of isotactic polypropylene (iPP)/poly (lactic acid)(PLA) and iPP/PLA/nano calcium carbonates using phanerochaete chrysosporium. Adv. Polym. Technol. 37, 522–530 (2018).
-
Skariyachan, S. et al. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym. Degrad. Stab. 149, 52–68 (2018).
-
Wichatham, K. et al. Biodegradation of polypropylene plastics in vitro and natural condition by Streptomyces sp. isolated from plastic-contaminated sites. Environ. Technol. Innov. 35, 103681 (2024).
-
Auta, S., Emenike, C. & Fauziah, S. Screening for polypropylene degradation potential of bacteria isolated from mangrove ecosystems in Peninsular Malaysia. Int. J. Biosci. Biochem. Bioinform. 7, 245–251 (2017).
-
Tan, Q. et al. The programmed sequence-based oxygenase screening for polypropylene degradation. J. Hazard. Mater. 465, 133173 (2024).
-
Arregui, L. et al. Laccases: structure, function, and potential application in water bioremediation. Microb. Cell Factories 18, 1–33 (2019).
-
Morozova, O., Shumakovich, G., Shleev, S. & Yaropolov, Y. I. Laccase-mediator systems and their applications: a review. Appl. Biochem. Microbiol. 43, 523–535 (2007).
-
Zargar, A. N. et al. Asphaltene biotransformation for heavy oil upgradation. AMB Express 11, 1–19 (2021).
-
Zampolli, J. et al. Oxidative degradation of polyethylene by two novel laccase-like multicopper oxidases from Rhodococcus opacus R7. Environ. Technol. Innov. 32, 103273 (2023).
-
Zampolli, J. et al. Transcriptomic analysis of Rhodococcus opacus R7 grown on polyethylene by RNA-seq. Sci. Rep. 11, 21311 (2021).
-
Yoon, M. G., Jeon, H. J. & Kim, M. N. Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. J. Bioremediation Biodegrad. 3, 1–8 (2012).
-
Restrepo-Flórez, J.-M., Bassi, A. & Thompson, M. R. Microbial degradation and deterioration of polyethylene—a review. Int. Biodeterior. Biodegrad. 88, 83–90 (2014).
-
Kinkar, E., Kinkar, A. & Saleh, M. The multicopper oxidase of Mycobacterium tuberculosis (MmcO) exhibits ferroxidase activity and scavenges reactive oxygen species in activated THP-1 cells. Int. J. Med. Microbiol. 309, 151324 (2019).
-
Brouwers, G.-J. et al. cumA, a gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1. Appl. Environ. Microbiol. 65, 1762–1768 (1999).
-
Larsen, E. I., Sly, L. I. & McEwan, A. G. Manganese (II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067. Arch. Microbiol. 171, 257–264 (1999).
-
Palm-Espling, M. E., Niemiec, M. S. & Wittung-Stafshede, P. Role of metal in folding and stability of copper proteins in vitro. Biochim. Biophys. Acta Mol. Cell Res. 1823, 1594–1603 (2012).
-
Harrison, M. D., Jones, C. E., Solioz, M. & Dameron, C. T. Intracellular copper routing: the role of copper chaperones. Trends Biochem Sci. 25, 29–32 (2000).
-
Achila, D. et al. Structure of human Wilson protein domains 5 and 6 and their interplay with domain 4 and the copper chaperone HAH1 in copper uptake. Proc. Natl. Acad. Sci. USA 103, 5729–5734 (2006).
-
Itoh, S. et al. Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. J. Biol. Chem. 283, 9157–9167 (2008).
-
Moro, G., Brissos, V., Zanardi, C., Martins, L. O. & Conzuelo, F. Electrochemical investigations of the multicopper oxidase from Aquifex aeolicus under direct electron transfer with carbon electrodes. Electrochim. Acta. 468, 143199 (2023).
-
Chumillas, S. et al. Comprehensive study of the enzymatic catalysis of the electrochemical oxygen reduction reaction (ORR) by immobilized copper efflux oxidase (CueO) from Escherichia coli. Front. Chem. 6, 358 (2018).
-
Mattos, G. J. et al. Electrochemical characterization of the laccase-catalyzed oxidation of 2,6-dimethoxyphenol: an insight into the direct electron transfer by enzyme and enzyme-mediator system. Appl. Biochem. Biotechnol. 194, 4348–4361 (2022).
-
Zhou, G. et al. Determination of reactive oxygen species generated in laccase catalyzed oxidation of wood fibers from Chinese fir (Cunninghamia lanceolata) by electron spin resonance spectrometry. Bioresour. Technol. 100, 505–508 (2009).
-
Cardullo, N., Muccilli, V. & Tringali, C. Laccase-mediated synthesis of bioactive natural products and their analogues. RSC Chem. Biol. 3, 614–647 (2022).
-
Janusz, G. et al. Laccase Properties, Physiological Functions, and Evolution. Int. J. Mol. Sci. 21, 966 (2020).
-
Baiocco, P., Barreca, A. M., Fabbrini, M., Galli, C. & Gentili, P. Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase–mediator systems. Org. Biomol. Chem. 1, 191–197 (2003).
-
Galletti, P. et al. Laccase-mediator system for alcohol oxidation to carbonyls or carboxylic acids: toward a sustainable synthesis of profens. ChemSusChem. 7, 2684–2689 (2014).
-
Harper, C. A. Handbook of Plastics, Elastomers, and Composites Vol. 4 (McGraw-Hill, 1996).
-
Steller, R. & Meissner, W. Structure and properties of degradable polyolefin-starch blends. Polym. Degrad. Stab. 60, 471–480 (1998).
-
Cacciari, I. et al. Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. Appl. Environ. Microbiol. 59, 3695–3700 (1993).
-
Iwamoto, A. & Tokiwa, Y. Enzymatic degradation of plastics containing polycaprolactone. Polym. Degrad. Stab. 45, 205–213 (1994).
-
Alariqi, S. A., Kumar, A. P., Rao, B. & Singh, R. Biodegradation of γ-sterilised biomedical polyolefins under composting and fungal culture environments. Polym. Degrad. Stab. 91, 1105–1116 (2006).
-
Kaczmarek, H., Ołdak, D., Malanowski, P. & Chaberska, H. Effect of short wavelength UV-irradiation on ageing of polypropylene/cellulose compositions. Polym. Degrad. Stab. 88, 189–198 (2005).
-
Huang, C.-Y., Roan, M.-L., Kuo, M.-C. & Lu, W.-L. Effect of compatibiliser on the biodegradation and mechanical properties of high-content starch/low-density polyethylene blends. Polym. Degrad. Stab. 90, 95–105 (2005).
-
Ramis, X. et al. Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability. Polym. Degrad. Stab. 86, 483–491 (2004).
-
Arkatkar, A., Juwarkar, A. A., Bhaduri, S., Uppara, P. V. & Doble, M. Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int. Biodeterior. Biodegrad. 64, 530–536 (2010).
-
Morancho, J. et al. Calorimetric and thermogravimetric studies of UV-irradiated polypropylene/starch-based materials aged in soil. Polym. Degrad. Stab. 91, 44–51 (2006).
-
Kathiresan, K. Polythene and plastics-degrading microbes from the mangrove soil. Rev. Biol. Trop. 51, 629–633 (2003).
-
Montazer, Z., Habibi Najafi, M. B. & Levin, D. B. “Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers”. Can. J. Microbiol. 65, 224–234 (2019).
-
Shah, A. A., Hasan, F., Hameed, A. & Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 26, 246–265 (2007).
-
Emmanuel-Akerele, H. A., Akinyemi, P. & Igbogbo-Ekpunobi, O. E. “Isolation and identification of plastic degrading bacteria from dumpsites Lagos”.1 ():. Adv. Environ. Technol. 8, 59–71 (2022).
-
Ghatge, S., Yang, Y, Ahn, J. H. & Hur, H. G. Biodegradation of polyethylene: a brief review. Appl. Biol. Chem. 63, 27 (2020).
-
Zhang, A., Hou, Y., Wang, Q. & Wang, Y. Characteristics and polyethylene biodegradation function of a novel cold-adapted bacterial laccase from Antarctic sea ice psychrophile Psychrobacter sp. NJ228. J. Hazard. Mater. 439, 129656 (2022).
-
Wasserbauer, R., Beranova, M., Vancurova, D. & Doležel, B. Biodegradation of polyethylene foils by bacterial and liver homogenates. Biomaterials 11, 36–40 (1990).
-
Yang, J., Yang, Y., Wu, W.-M., Zhao, J. & Jiang, L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ. Sci. Technol. 48, 13776–13784 (2014).
-
Yao, C., Xia, W., Dou, M., Du, Y. & Wu, J. Oxidative degradation of UV-irradiated polyethylene by laccase-mediator system. J. Hazard. Mater. 440, 129709 (2022).
-
Zhang, X. et al. Degradation of polyethylene by Klebsiella pneumoniae Mk-1 isolated from soil. Ecotoxicol. Environ. Saf. 258, 2023 (2023).
-
Telke, A. A., Ghodake, G. S., Kalyani, D. C., Dhanve, R. S. & Govindwar, S. P. Biochemical characteristics of a textile dye degrading extracellular laccase from a Bacillus sp. ADR. Bioresour. Technol. Rep. 102, 1752–1756 (2011).
-
Wang, H. et al. Characterization and application of a novel laccase derived from Bacillus amyloliquefaciens. Int. J. Biol. Macromol. 150, 982–990 (2020).
-
Neelkant, K. S., Shankar, K., Jayalakshmi, S. K. & Sreeramulu, K. Purification, biochemical characterization, and facile immobilization of laccase from Sphingobacterium ksn-11 and its application in transformation of diclofenac. Appl. Biochem. Biotechnol. 192, 831–844 (2020).
-
Enyoh, C. E., Wang, Q., Ovuoraye, P. E. & Maduka, T. O. Toxicity evaluation of microplastics to aquatic organisms through molecular simulations and fractional factorial designs. Chemosphere 308, 136342 (2022).
-
Ray, A. S., Rajasekaran, M., Uddin, M. & Kandasamy, R. Laccase driven biocatalytic oxidation to reduce polymeric surface hydrophobicity: An effective pre-treatment strategy to enhance biofilm mediated degradation of polyethylene and polycarbonate plastics. Sci. Total Environ. 904, 166721 (2023).
-
Satomura, T. akenori et al. Activity enhancement of multicopper oxidase from a hyperthermophile via directed evolution, and its application as the element of a high performance biocathode. J. Biotechnol. 325, 226–232 (2021).
-
Takamura, E. et al. Site-directed mutagenesis of multicopper oxidase from hyperthermophilic archaea for high-voltage biofuel cells. Appl. Biochem. Biotechnol. 193, 492–501 (2020).
-
Ma, Y., Tayefi, S. H., Mogharabi-Manzari, M. & Luo, X. Advances in immobilized enzyme systems for enhanced microplastic biodegradation: a review. Int. J. Biol. Macromol. 328, 147656 (2025).
-
Wojnowska-Baryła, I., Bernat, K. & Zaborowska, M. Plastic waste degradation in landfill conditions: the problem with microplastics, and their direct and indirect environmental effects. Int. J. Environ. Res. Public Health 19, 13223 (2022).
-
Singh, P., Chachan, S., Singhi, D. & Srivastava, P. Isolation and molecular characterization of a stationary phase promoter useful for gene expression in Gordonia. Gene 591, 153–160 (2016).
-
Jhadav, A. et al. Optimization of production and partial purification of laccase by Phanerochaete chrysosporium using submerged fermenation. Int. J. Microbiol. Res. 1, 9 (2009).
-
Lonhienne, T., Gerday, C. & Feller, G. Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1543, 1–10 (2000).
-
Samat, A. F., Carter, D. & Abbas, A. Biodeterioration of pre-treated polypropylene by Aspergillus terreus and Engyodontium album. npj Mater. Degrad. 7, 28 (2023).
-
Rose, P. W. et al. The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res. 41, D475–D482 (2012).
-
Kiefer, F., Arnold, K., Künzli, M., Bordoli, L. & Schwede, T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 37, D387–D392 (2009).
-
Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003).
-
Ge, H. et al. Structure of native laccase B from Trametes sp. AH28-2. Struct. Biol. Cryst. Commun. 66, 254–258 (2010).
-
Morris, G. M. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998).
-
Brooijmans, N. & Kuntz, I. D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct. 32, 335–373 (2003).
-
ACD, V. & Elucidator, S. Advanced Chemistry Development, Inc., (Toronto, ON, Canada, 2019).
-
Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).
-
Accelrys Software Inc. Discovery Studio Modeling Environment, Release 2.0, (San Diego: Accelrys Software Inc., 2008).
-
Visualizer, D. Discovery Studio visualizer. 2. (Accelrys Software Inc., Waltham, United States, 2005).
-
Bowers, Kevin J. et al. “Scalable algorithms for molecular dynamics simulations on commodity clusters.” In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. (2006).
-
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
-
Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A. 31, 1695 (1985).
-
Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 10.1063 (1994).
-
Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).
