References
-
Ambient (outdoor) air pollution. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.
-
Park, J., Kim, H.-J., Lee, C.-H., Lee, C. H. & Lee, H. W. Impact of long-term exposure to ambient air pollution on the incidence of chronic obstructive pulmonary disease: A systematic review and meta-analysis. Environ. Res. 194, 110703 (2021).
-
Aghapour, M. et al. Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. European Respiratory Rev. 31, 210112 (2022).
-
Wang, Q. & Liu, S. The effects and pathogenesis of PM2.5 and its components on chronic obstructive pulmonary disease. Int. J. Chron Obstruct Pulmon. Dis. 18, 493–506 (2023).
-
De Longueville, F., Hountondji, Y.-C., Henry, S. & Ozer, P. What do we know about effects of desert dust on air quality and human health in West Africa compared to other regions?. Sci. Total. Environ. 409, 1–8 (2010).
-
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the Nimbus 7 Total Ozone Mapping Spectrometer (toms) Absorbing Aerosol Product. Rev. Geophys. 40, 2-1–2-31 (2002).
-
Slezakova, K. et al. Atmospheric Nanoparticles and Their Impacts on Public Health. in Current Topics in Public Health (IntechOpen, 2013)
-
Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17-71 (2007).
-
Geiser, M. & Kreyling, W. G. Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 7, 2 (2010).
-
Zhou, X., Jin, W. & Ma, J. Lung inflammation perturbation by engineered nanoparticles. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2023.1199230 (2023).
-
Atalay-Sahar, E. et al. Novel approach methodologies in modeling complex bioaerosol exposure in asthma and allergic rhinitis under climate change. Expert Rev. Mol. Med. 27, e13 (2025).
-
Sengupta, A. et al. A next-generation system for smoke inhalation integrated with a breathing lung-on-chip to model human lung responses to cigarette exposure. Sci Rep 15, 18181 (2025).
-
Tanabe, I. & Ishikawa, S. Comprehensive characterization of human alveolar epithelial cells cultured for 28 days at the air-liquid interface. Sci Rep 15, 22995 (2025).
-
Kaya, B. & Yesil-Celiktas, O. Ionic liquid-based transparent membrane-coupled human lung epithelium-on-a-chip demonstrating PM0.5 pollution effect under breathing mechanostress. Bio-des. Manuf. 7, 624–636 (2024).
-
Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).
-
Benam, K. H. et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 13, 151–157 (2016).
-
Blume, C. et al. Temporal monitoring of differentiated human airway epithelial cells using microfluidics. PLoS ONE 10, e0139872 (2015).
-
Silva, S., Bicker, J., Falcão, A. & Fortuna, A. Air-liquid interface (ALI) impact on different respiratory cell cultures. Eur. J. Pharm. Biopharm. 184, 62–82 (2023).
-
Leung, C. M. et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2, 33 (2022).
-
Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019).
-
Murphy, A. R. & Allenby, M. C. In vitro microvascular engineering approaches and strategies for interstitial tissue integration. Acta Biomater. 171, 114–130 (2023).
-
Malkani, S., Prado, O. & Stevens, K. R. Sacrificial templating for accelerating clinical translation of engineered organs. ACS Biomater. Sci. Eng. 11, 1–12 (2025).
-
Miller, A. J. et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat. Protoc. 14, 518–540 (2019).
-
Saglam-Metiner, P. et al. Organotypic lung tissue culture as a preclinical model to study host- influenza A viral infection: A case for repurposing of nafamostat mesylate. Tissue Cell 87, 102319 (2024).
-
Valdoz, J. C. et al. Soluble ECM promotes organotypic formation in lung alveolar model. Biomaterials 283, 121464 (2022).
-
McCulloh, K. A., Sperry, J. S. & Adler, F. R. Water transport in plants obeys Murray’s law. Nature 421, 939–942 (2003).
-
Arslan, Y. et al. Bioinspired microstructures through decellularization of plants for tissue engineering applications. Eur. Polymer J. 198, 112415 (2023).
-
Harris, A. F. et al. Decellularized spinach biomaterials support physiologically relevant mechanical cyclic strain and prompt a stretch-induced cellular response. ACS Appl. Bio Mater. 5, 5682–5692 (2022).
-
Lee, T. et al. Perfusable cellulose channels from decellularized leaf scaffolds for modeling vascular amyloidosis. Int. J. Biol. Macromol. 308, 142509 (2025).
-
Predeina, A. L., Prilepskii, A. Y., de Zea Bermudez, V. & Vinogradov, V. V. Bioinspired in vitro brain vasculature model for nanomedicine testing based on decellularized spinach leaves. Nano Lett. 21, 9853–9861 (2021).
-
Filiz, Y. et al. Decellularized plant-derived vasculature-on-a-chip interacting with breast cancer spheroids to evaluate a dual-drug therapy. Appl. Mater. Today 36, 102015 (2024).
-
Kurihara, D., Mizuta, Y., Nagahara, S., Sato, Y. & Higashiyama, T. Optical clearing of plant tissues for fluorescence imaging. J. Vis. Exp. https://doi.org/10.3791/63428 (2022).
-
Zhu, Y. et al. Current advances in the development of decellularized plant extracellular matrix. Front. Bioeng. Biotechnol. 9, 712262 (2021).
-
Stavolone, L. & Lionetti, V. Extracellular matrix in plants and animals: hooks and locks for viruses. Front. Microbiol. 8, 1760 (2017).
-
Rea, I., Giardina, P., Longobardi, S. & De Stefano, L. 6 – Protein-modified porous silicon films for biomedical applications. In: Porous Silicon for Biomedical Applications (ed. Santos, H. A.) 104–128 (Woodhead Publishing, 2014).
-
Harris, A. F. et al. Supercritical carbon dioxide decellularization of plant material to generate 3D biocompatible scaffolds. Sci. Rep. 11, 3643 (2021).
-
Hardin, J. A. et al. Rapid quantification of spinach leaf cuticular wax using fourier transform infrared attenuated total reflectance spectroscopy. Trans. ASABE 56(1), 331–339 (2013).
-
Garrison, V. H. et al. Inhalable desert dust, urban emissions, and potentially biotoxic metals in urban Saharan-Sahelian air. Sci. Total. Environ. 500–501, 383–394 (2014).
-
Işık, Ü., Çevik, U., Akkoca, D. B., Oğuz, K. & Damla, N. Chemical and radiological characterizations of the desert dust coming from Northern Africa to batman (Southeastern Turkey). CSJ 43, 526–533 (2022).
-
Guieu, C., Loÿe-Pilot, M.-D., Ridame, C. & Thomas, C. Chemical characterization of the Saharan dust end-member: Some biogeochemical implications for the western Mediterranean Sea. J. Geophys. Res.: Atmospheres 107, ACH 5-1-ACH 5-11 (2002).
-
Goksel, O. et al. Comprehensive analysis of resilience of human airway epithelial barrier against short-term PM2.5 inorganic dust exposure using in vitro microfluidic chip and ex vivo human airway models. Allergy 79, 2953–2965 (2024).
-
Air pollution: concentrations of fine particulate matter (PM2.5), SDG 11.6.2. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/concentrations-of-fine-particulate-matter-(pm2-5).
-
Boraschi, D. et al. Nanoparticles and innate immunity: new perspectives on host defence. Semin. Immunol. 34, 33–51 (2017).
-
Stuart, B. O. Deposition and clearance of inhaled particles. Environ. Health Perspect 55, 369–390 (1984).
-
Lertkiatmongkol, P., Liao, D., Mei, H., Hu, Y. & Newman, P. J. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr. Opin. Hematol. 23, 253–259 (2016).
-
Kuo, W.-T., Odenwald, M. A., Turner, J. R. & Zuo, L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann. N Y Acad. Sci. 1514, 21–33 (2022).
-
Srinivasan, B. et al. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 20, 107–126 (2015).
-
Griffith, C. K. et al. Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng. 11, 257–266 (2005).
-
Yaldiz, B., Saglam-Metiner, P. & Yesil-Celiktas, O. Decellularised extracellular matrix-based biomaterials for repair and regeneration of central nervous system. Expert Rev. Mol. Med. 23, e25 (2021).
-
Gershlak, J. R. et al. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials 125, 13–22 (2017).
-
Lin, T.-W. et al. Establishing Liposome-Immobilized Dexamethasone-Releasing PDMS Membrane for the Cultivation of Retinal Pigment Epithelial Cells and Suppression of Neovascularization. Int. J. Mol. Sci. 20, 241 (2019).
-
Dikici, S., Claeyssens, F. & MacNeil, S. Decellularised baby spinach leaves and their potential use in tissue engineering applications: Studying and promoting neovascularisation. J. Biomater. Appl. 34, 546–559 (2019).
-
Bai, H. et al. Application of the Tissue-Engineered Plant Scaffold as a Vascular Patch. ACS Omega 6, 11595–11601 (2021).
-
Mahowald, N. et al. The size distribution of desert dust aerosols and its impact on the Earth system. Aeol. Res. 15, 53–71 (2014).
-
Kamble, S. et al. Revisiting zeta potential, the key feature of interfacial phenomena, with applications and recent advancements. ChemistrySelect 7, e202103084 (2022).
-
White, B., Banerjee, S., O’Brien, S., Turro, N. J. & Herman, I. P. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J. Phys. Chem. C 111, 13684–13690 (2007).
-
Scheuvens, D., Schütz, L., Kandler, K., Ebert, M. & Weinbruch, S. Bulk composition of northern African dust and its source sediments: A compilation. Earth Sci. Rev. 116, 170–194 (2013).
-
Belghazdis, M. & Hachem, E.-K. Clay and clay minerals: A detailed review. Int. J. Recent Technol. Appl. Sci. (IJORTAS) 4, 54–75 (2022).
-
Ghio, A. J. Particle exposures and infections. Infection 42, 459–467 (2014).
-
Marín-Palma, D. et al. Particulate matter impairs immune system function by up-regulating inflammatory pathways and decreasing pathogen response gene expression. Sci. Rep. 13, 12773 (2023).
-
Akdis, C. A. The epithelial barrier hypothesis proposes a comprehensive understanding of the origins of allergic and other chronic noncommunicable diseases. J. Allergy Clin. Immunol. 149, 41–44 (2022).
-
Adami, G. et al. Association between long-term exposure to air pollution and immune-mediated diseases: A population-based cohort study. RMD Open 8, e002055 (2022).
-
Ramsperger, A. F. R. M. et al. Nano- and microplastics: a comprehensive review on their exposure routes, translocation, and fate in humans. NanoImpact 29, 100441 (2023).
-
Sinclair, W. E. et al. Gold nanoparticles disrupt actin organization and pulmonary endothelial barriers. Sci. Rep. 10, 13320 (2020).
-
Schlinkert, P. et al. The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J. Nanobiotechnol. 13, 1 (2015).
-
Stewart, C. E., Torr, E. E., Mohd Jamili, N. H., Bosquillon, C. & Sayers, I. Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. J. Allergy (Cairo) 2012, 943982 (2012).
-
Ghozikali, M. G. et al. Status of TNF-α and IL-6 as pro-inflammatory cytokines in exhaled breath condensate of late adolescents with asthma and healthy in the dust storm and non-dust storm conditions. Sci. Tot. Environ. 838, 155536 (2022).
-
Bedford, R. et al. A multi-organ, lung-derived inflammatory response following in vitro airway exposure to cigarette smoke and next-generation nicotine delivery products. Toxicol. Lett. 387, 35–49 (2023).
-
Lee, S.-J. et al. Asian sand dust exacerbates airway inflammation in a mouse model of asthma. Lab. Animal Res. 41, 13 (2025).
-
Rolski, F. & Błyszczuk, P. Complexity of TNF-α signaling in heart disease. J Clin Med 9, 3267 (2020).
-
Sun, Y., Koyama, Y. & Shimada, S. Inflammation from peripheral organs to the brain: How does systemic inflammation cause neuroinflammation?. Front. Aging Neurosci. 14, 903455 (2022).
-
Logothetis, S.-A. et al. 15-year variability of desert dust optical depth on global and regional scales. Atmos. Chem. Phys. 21, 16499–16529 (2021).
-
Manisalidis, I., Stavropoulou, E., Stavropoulos, A. & Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 8, 14 (2020).
-
Doyle, J.J. and Doyle, J.L. (1987) A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochemical Bulletin, 19, 11–15. – References – Scientific Research Publishing. https://www.scirp.org/reference/referencespapers?referenceid=1698909.
-
Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959).
-
Yang, G. et al. Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci. Rep. 8, 1616 (2018).
