References
-
Muteeb, G., Rehman, M. T., Shahwan, M. & Aatif, M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: a narrative review. Pharmaceuticals 16, https://doi.org/10.3390/ph16111615 (2023).
-
Walsh, T. R., Gales, A. C., Laxminarayan, R. & Dodd, P. C. Antimicrobial resistance: addressing a global threat to humanity. PLoS Med 20, e1004264 (2023).
-
Mirzayev, F. et al. World Health Organization recommendations on the treatment of drug-resistant tuberculosis, 2020 update. Eur. Respir. J. https://doi.org/10.1183/13993003.03300-2020 (2021).
-
Yin, Q. et al. Ecological dynamics of Enterobacteriaceae in the human gut microbiome across global populations. Nature Microbiology 10, https://doi.org/10.1038/s41564-024-01912-6 (2025).
-
Vo, Q. T. et al. Utilization of cumulative antibiograms for public health surveillance: trends in Escherichia coli and Klebsiella pneumoniae susceptibility, Massachusetts, 2008-2018. Infect Control Hosp Epidemiol. 42, 169–175 (2021).
-
Letara, N. et al. Prevalence and patient related factors associated with Extended-Spectrum Beta-Lactamase producing Escherichia coli and Klebsiella pneumoniae carriage and infection among pediatric patients in Tanzania. Sci Rep. 11, 22759 (2021).
-
Velazquez, E. M. et al. Endogenous Enterobacteriaceae underlie variation in susceptibility to Salmonella infection. Nat. Microbiol. 4, 1057–1064 (2019).
-
Lopez-Siles, M., Corral-Lugo, A. & McConnell, M. J. Vaccines for multidrug resistant Gram negative bacteria: lessons from the past for guiding future success. FEMS Microbiol. Rev. 45, https://doi.org/10.1093/femsre/fuaa054 (2021).
-
Osterloh, A. Vaccination against bacterial infections: challenges, progress, and new approaches with a focus on intracellular bacteria. Vaccines 10, https://doi.org/10.3390/vaccines10050751 (2022).
-
Yeh, M. T. et al. Engineering the live-attenuated polio vaccine to prevent reversion to virulence. Cell Host Microbe 27, 736–751. e738 (2020).
-
Higham, S. L. et al. Intranasal immunization with outer membrane vesicles (OMV) protects against airway colonization and systemic infection with Acinetobacter baumannii. J. Infect. 86, 563–573 (2023).
-
Li, S., Liang, H., Zhao, S. H., Yang, X. Y. & Guo, Z. Recent progress in pneumococcal protein vaccines. Front. Immunol. 14, 1278346 (2023).
-
Crump, J. A. & Oo, W. T. Salmonella Typhi Vi polysaccharide conjugate vaccine protects infants and children against typhoid fever. Lancet 398, 643–644 (2021).
-
Bergstrom, C., Fischer, N. O., Kubicek-Sutherland, J. Z. & Stromberg, Z. R. mRNA vaccine platforms to prevent bacterial infections. Trends Mol. Med. 30, 524–526 (2024).
-
Khlebnikova, A., Kirshina, A., Zakharova, N., Ivanov, R. & Reshetnikov, V. Current progress in the development of mRNA vaccines against bacterial infections. Int. J. Mol. Sci. 25, https://doi.org/10.3390/ijms252313139 (2024).
-
Maruggi, G., Zhang, C., Li, J., Ulmer, J. B. & Yu, D. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol. Ther. 27, 757–772 (2019).
-
Li, W., Wang, C., Zhang, Y. & Lu, Y. Lipid nanocarrier-based mRNA therapy: challenges and promise for clinical transformation. Small 20, e2310531 (2024).
-
Wang, X. et al. Strong immune responses and protection of PcrV and OprF-I mRNA vaccine candidates against Pseudomonas aeruginosa. npj Vaccines 8, 76 (2023).
-
Alameh, M. G. et al. A multivalent mRNA-LNP vaccine protects against Clostridioides difficile infection. Science 386, 69–75 (2024).
-
Pardi, N. & Krammer, F. mRNA vaccines for infectious diseases – advances, challenges and opportunities. Nat. Rev. Drug Discov 23, 838–861 (2024).
-
Mir, S. & Mir, M. The mRNA vaccine, a swift warhead against a moving infectious disease target. Expert Rev. Vaccines 23, 336–348 (2024).
-
Alshabrmi, F. M. et al. An in-silico investigation to design a multi-epitopes vaccine against multi-drug resistant Hafnia alvei. Vaccines 10, https://doi.org/10.3390/vaccines10071127 (2022).
-
Rodrigues, M. X., Yang, Y., de Souza Meira, E. B. Jr., do Carmo Silva, J. & Bicalho, R. C. Development and evaluation of a new recombinant protein vaccine (YidR) against Klebsiella pneumoniae infection. Vaccine 38, 4640–4648 (2020).
-
Tomazi, T. et al. Immunization with a novel recombinant protein (YidR) reduced the risk of clinical mastitis caused by Klebsiella spp. and decreased milk losses and culling risk after Escherichia coli infections. J. Dairy Sci. 104, 4787–4802 (2021).
-
Huang, T. et al. mRNA-LNP vaccines combined with tPA signal sequence elicit strong protective immunity against Klebsiella pneumoniae. mSphere 10, e0077524 (2025).
-
Jiang, Z., Kang, X., Song, Y., Zhou, X. & Yue, M. Identification and evaluation of novel antigen candidates against Salmonella pullorum infection using reverse vaccinology. Vaccines 11, https://doi.org/10.3390/vaccines11040865 (2023).
-
Neznansky, A. & Opatowsky, Y. Expression, purification and crystallization of the phosphate-binding PstS protein from Pseudomonas aeruginosa. Acta Crystallogr. F Struct. Biol. Commun. 70, 906–910 (2014).
-
Neznansky, A., Blus-Kadosh, I., Yerushalmi, G., Banin, E. & Opatowsky, Y. The Pseudomonas aeruginosa phosphate transport protein PstS plays a phosphate-independent role in biofilm formation. FASEB J. 28, 5223–5233 (2014).
-
Navon-Venezia, S., Kondratyeva, K. & Carattoli, A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 41, 252–275 (2017).
-
Bournazos, S. & Ravetch, J. V. Fcgamma receptor function and the design of vaccination strategies. Immunity 47, 224–233 (2017).
-
Rethi-Nagy, Z. et al. STABILON, a novel sequence motif that enhances the expression and accumulation of intracellular and secreted proteins. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23158168 (2022).
-
Chorro, L. et al. Preclinical immunogenicity and efficacy of optimized O25b O-antigen glycoconjugates to prevent MDR ST131 E. coli infections. Infect. Immun. 90, e0002222 (2022).
-
Lu, J. et al. Salmonella: infection mechanism and control strategies. Microbiol. Res. 292, 128013 (2025).
-
Spragge, F. et al. Microbiome diversity protects against pathogens by nutrient blocking. Science 382, eadj3502 (2023).
-
Pan, C., Yue, H., Zhu, L., Ma, G. H. & Wang, H. L. Prophylactic vaccine delivery systems against epidemic infectious diseases. Adv. Drug Deliv Rev. 176, 113867 (2021).
-
Amani, S. A. & Lang, M. L. Bacteria that cause enteric diseases stimulate distinct humoral immune responses. Front. Immunol. 11, https://doi.org/10.3389/fimmu.2020.565648 (2020).
-
Ali, A. et al. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci. 314, https://doi.org/10.1016/j.lfs.2022.121332 (2023).
-
Lin, I. Y. C., Van, T. T. H. & Smooker, P. M. Live-attenuated bacterial vectors: tools for vaccine and therapeutic agent delivery. Vaccines Basel 3, 940–972 (2015).
-
Papadatou, I., Tzovara, I. & Licciardi, P. V. The role of serotype-specific immunological memory in pneumococcal vaccination: current knowledge and future prospects. Vaccines Basel 7, https://doi.org/10.3390/vaccines7010013 (2019).
-
Kumar, P. et al. Evaluating the compatibility of new recombinant protein antigens (Trivalent NRRV) with a mock pentavalent combination vaccine containing whole-cell pertussis: analytical and formulation challenges. Vaccines 12, https://doi.org/10.3390/vaccines12060609 (2024).
-
Ireton, K., Gyanwali, G. C., Herath, T. U. B. & Lee, N. Exploitation of the host exocyst complex by bacterial pathogens. Mol. Microbiol. 120, 32–44 (2023).
-
Follador, R. et al. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb Genom. 2, e000073 (2016).
-
Shafaghi, M. et al. Immunoinformatics-aided design of a new multi-epitope vaccine adjuvanted with domain 4 of pneumolysin against strains. Bmc Bioinform. 24, https://doi.org/10.1186/s12859-023-05175-6 (2023).
-
Goetz, M., Thotathil, N., Zhao, Z. M. & Mitragotri, S. Vaccine adjuvants for infectious disease in the clinic. Bioeng. Transl. Med. 9, https://doi.org/10.1002/btm2.10663 (2024).
-
Sterzenbach, U. et al. Engineered exosomes as vehicles for biologically active proteins. Mol. Ther. 25, 1269–1278 (2017).
-
Banskota, S. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250–265.e216 (2022).
-
Moreira de Gouveia, M. I., Bernalier-Donadille, A. & Jubelin, G. Enterobacteriaceae in the human gut: dynamics and ecological roles in health and disease. Biology 13, https://doi.org/10.3390/biology13030142 (2024).
-
Chen, H., Ren, X., Xu, S., Zhang, D. & Han, T. Optimization of lipid nanoformulations for effective mRNA delivery. Int. J. Nanomed. 17, 2893–2905 (2022).
