Next-generation mRNA vaccines eliciting robust protection against multidrug-resistant Enterobacteriaceae

next-generation-mrna-vaccines-eliciting-robust-protection-against-multidrug-resistant-enterobacteriaceae
Next-generation mRNA vaccines eliciting robust protection against multidrug-resistant Enterobacteriaceae

References

  1. Muteeb, G., Rehman, M. T., Shahwan, M. & Aatif, M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: a narrative review. Pharmaceuticals 16, https://doi.org/10.3390/ph16111615 (2023).

  2. Walsh, T. R., Gales, A. C., Laxminarayan, R. & Dodd, P. C. Antimicrobial resistance: addressing a global threat to humanity. PLoS Med 20, e1004264 (2023).

    Google Scholar 

  3. Mirzayev, F. et al. World Health Organization recommendations on the treatment of drug-resistant tuberculosis, 2020 update. Eur. Respir. J. https://doi.org/10.1183/13993003.03300-2020 (2021).

  4. Yin, Q. et al. Ecological dynamics of Enterobacteriaceae in the human gut microbiome across global populations. Nature Microbiology 10, https://doi.org/10.1038/s41564-024-01912-6 (2025).

  5. Vo, Q. T. et al. Utilization of cumulative antibiograms for public health surveillance: trends in Escherichia coli and Klebsiella pneumoniae susceptibility, Massachusetts, 2008-2018. Infect Control Hosp Epidemiol. 42, 169–175 (2021).

    Google Scholar 

  6. Letara, N. et al. Prevalence and patient related factors associated with Extended-Spectrum Beta-Lactamase producing Escherichia coli and Klebsiella pneumoniae carriage and infection among pediatric patients in Tanzania. Sci Rep. 11, 22759 (2021).

    Google Scholar 

  7. Velazquez, E. M. et al. Endogenous Enterobacteriaceae underlie variation in susceptibility to Salmonella infection. Nat. Microbiol. 4, 1057–1064 (2019).

    Google Scholar 

  8. Lopez-Siles, M., Corral-Lugo, A. & McConnell, M. J. Vaccines for multidrug resistant Gram negative bacteria: lessons from the past for guiding future success. FEMS Microbiol. Rev. 45, https://doi.org/10.1093/femsre/fuaa054 (2021).

  9. Osterloh, A. Vaccination against bacterial infections: challenges, progress, and new approaches with a focus on intracellular bacteria. Vaccines 10, https://doi.org/10.3390/vaccines10050751 (2022).

  10. Yeh, M. T. et al. Engineering the live-attenuated polio vaccine to prevent reversion to virulence. Cell Host Microbe 27, 736–751. e738 (2020).

    Google Scholar 

  11. Higham, S. L. et al. Intranasal immunization with outer membrane vesicles (OMV) protects against airway colonization and systemic infection with Acinetobacter baumannii. J. Infect. 86, 563–573 (2023).

    Google Scholar 

  12. Li, S., Liang, H., Zhao, S. H., Yang, X. Y. & Guo, Z. Recent progress in pneumococcal protein vaccines. Front. Immunol. 14, 1278346 (2023).

    Google Scholar 

  13. Crump, J. A. & Oo, W. T. Salmonella Typhi Vi polysaccharide conjugate vaccine protects infants and children against typhoid fever. Lancet 398, 643–644 (2021).

    Google Scholar 

  14. Bergstrom, C., Fischer, N. O., Kubicek-Sutherland, J. Z. & Stromberg, Z. R. mRNA vaccine platforms to prevent bacterial infections. Trends Mol. Med. 30, 524–526 (2024).

    Google Scholar 

  15. Khlebnikova, A., Kirshina, A., Zakharova, N., Ivanov, R. & Reshetnikov, V. Current progress in the development of mRNA vaccines against bacterial infections. Int. J. Mol. Sci. 25, https://doi.org/10.3390/ijms252313139 (2024).

  16. Maruggi, G., Zhang, C., Li, J., Ulmer, J. B. & Yu, D. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol. Ther. 27, 757–772 (2019).

    Google Scholar 

  17. Li, W., Wang, C., Zhang, Y. & Lu, Y. Lipid nanocarrier-based mRNA therapy: challenges and promise for clinical transformation. Small 20, e2310531 (2024).

    Google Scholar 

  18. Wang, X. et al. Strong immune responses and protection of PcrV and OprF-I mRNA vaccine candidates against Pseudomonas aeruginosa. npj Vaccines 8, 76 (2023).

    Google Scholar 

  19. Alameh, M. G. et al. A multivalent mRNA-LNP vaccine protects against Clostridioides difficile infection. Science 386, 69–75 (2024).

    Google Scholar 

  20. Pardi, N. & Krammer, F. mRNA vaccines for infectious diseases – advances, challenges and opportunities. Nat. Rev. Drug Discov 23, 838–861 (2024).

    Google Scholar 

  21. Mir, S. & Mir, M. The mRNA vaccine, a swift warhead against a moving infectious disease target. Expert Rev. Vaccines 23, 336–348 (2024).

    Google Scholar 

  22. Alshabrmi, F. M. et al. An in-silico investigation to design a multi-epitopes vaccine against multi-drug resistant Hafnia alvei. Vaccines 10, https://doi.org/10.3390/vaccines10071127 (2022).

  23. Rodrigues, M. X., Yang, Y., de Souza Meira, E. B. Jr., do Carmo Silva, J. & Bicalho, R. C. Development and evaluation of a new recombinant protein vaccine (YidR) against Klebsiella pneumoniae infection. Vaccine 38, 4640–4648 (2020).

    Google Scholar 

  24. Tomazi, T. et al. Immunization with a novel recombinant protein (YidR) reduced the risk of clinical mastitis caused by Klebsiella spp. and decreased milk losses and culling risk after Escherichia coli infections. J. Dairy Sci. 104, 4787–4802 (2021).

    Google Scholar 

  25. Huang, T. et al. mRNA-LNP vaccines combined with tPA signal sequence elicit strong protective immunity against Klebsiella pneumoniae. mSphere 10, e0077524 (2025).

    Google Scholar 

  26. Jiang, Z., Kang, X., Song, Y., Zhou, X. & Yue, M. Identification and evaluation of novel antigen candidates against Salmonella pullorum infection using reverse vaccinology. Vaccines 11, https://doi.org/10.3390/vaccines11040865 (2023).

  27. Neznansky, A. & Opatowsky, Y. Expression, purification and crystallization of the phosphate-binding PstS protein from Pseudomonas aeruginosa. Acta Crystallogr. F Struct. Biol. Commun. 70, 906–910 (2014).

    Google Scholar 

  28. Neznansky, A., Blus-Kadosh, I., Yerushalmi, G., Banin, E. & Opatowsky, Y. The Pseudomonas aeruginosa phosphate transport protein PstS plays a phosphate-independent role in biofilm formation. FASEB J. 28, 5223–5233 (2014).

    Google Scholar 

  29. Navon-Venezia, S., Kondratyeva, K. & Carattoli, A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 41, 252–275 (2017).

    Google Scholar 

  30. Bournazos, S. & Ravetch, J. V. Fcgamma receptor function and the design of vaccination strategies. Immunity 47, 224–233 (2017).

    Google Scholar 

  31. Rethi-Nagy, Z. et al. STABILON, a novel sequence motif that enhances the expression and accumulation of intracellular and secreted proteins. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23158168 (2022).

  32. Chorro, L. et al. Preclinical immunogenicity and efficacy of optimized O25b O-antigen glycoconjugates to prevent MDR ST131 E. coli infections. Infect. Immun. 90, e0002222 (2022).

    Google Scholar 

  33. Lu, J. et al. Salmonella: infection mechanism and control strategies. Microbiol. Res. 292, 128013 (2025).

    Google Scholar 

  34. Spragge, F. et al. Microbiome diversity protects against pathogens by nutrient blocking. Science 382, eadj3502 (2023).

    Google Scholar 

  35. Pan, C., Yue, H., Zhu, L., Ma, G. H. & Wang, H. L. Prophylactic vaccine delivery systems against epidemic infectious diseases. Adv. Drug Deliv Rev. 176, 113867 (2021).

    Google Scholar 

  36. Amani, S. A. & Lang, M. L. Bacteria that cause enteric diseases stimulate distinct humoral immune responses. Front. Immunol. 11, https://doi.org/10.3389/fimmu.2020.565648 (2020).

  37. Ali, A. et al. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci. 314, https://doi.org/10.1016/j.lfs.2022.121332 (2023).

  38. Lin, I. Y. C., Van, T. T. H. & Smooker, P. M. Live-attenuated bacterial vectors: tools for vaccine and therapeutic agent delivery. Vaccines Basel 3, 940–972 (2015).

    Google Scholar 

  39. Papadatou, I., Tzovara, I. & Licciardi, P. V. The role of serotype-specific immunological memory in pneumococcal vaccination: current knowledge and future prospects. Vaccines Basel 7, https://doi.org/10.3390/vaccines7010013 (2019).

  40. Kumar, P. et al. Evaluating the compatibility of new recombinant protein antigens (Trivalent NRRV) with a mock pentavalent combination vaccine containing whole-cell pertussis: analytical and formulation challenges. Vaccines 12, https://doi.org/10.3390/vaccines12060609 (2024).

  41. Ireton, K., Gyanwali, G. C., Herath, T. U. B. & Lee, N. Exploitation of the host exocyst complex by bacterial pathogens. Mol. Microbiol. 120, 32–44 (2023).

    Google Scholar 

  42. Follador, R. et al. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb Genom. 2, e000073 (2016).

    Google Scholar 

  43. Shafaghi, M. et al. Immunoinformatics-aided design of a new multi-epitope vaccine adjuvanted with domain 4 of pneumolysin against strains. Bmc Bioinform. 24, https://doi.org/10.1186/s12859-023-05175-6 (2023).

  44. Goetz, M., Thotathil, N., Zhao, Z. M. & Mitragotri, S. Vaccine adjuvants for infectious disease in the clinic. Bioeng. Transl. Med. 9, https://doi.org/10.1002/btm2.10663 (2024).

  45. Sterzenbach, U. et al. Engineered exosomes as vehicles for biologically active proteins. Mol. Ther. 25, 1269–1278 (2017).

    Google Scholar 

  46. Banskota, S. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250–265.e216 (2022).

    Google Scholar 

  47. Moreira de Gouveia, M. I., Bernalier-Donadille, A. & Jubelin, G. Enterobacteriaceae in the human gut: dynamics and ecological roles in health and disease. Biology 13, https://doi.org/10.3390/biology13030142 (2024).

  48. Chen, H., Ren, X., Xu, S., Zhang, D. & Han, T. Optimization of lipid nanoformulations for effective mRNA delivery. Int. J. Nanomed. 17, 2893–2905 (2022).

    Google Scholar 

Download references