Gao, Q. et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 23, 227–238.e3 (2018).
Su, X. et al. Challenges and prospects in utilizing technologies for gene fusion analysis in cancer diagnostics. Med-X 2, 14 (2024).
Burke, B. A. & Carroll, M. BCR-ABL: a multi-faceted promoter of DNA mutation in chronic myelogeneous leukemia. Leukemia 24, 1105–1112 (2010).
Yuan, L. et al. Recurrent FGFR3-TACC3 fusion gene in nasopharyngeal carcinoma. Cancer Biol. Ther. 15, 1613–1621 (2014).
Tamura, R. et al. Novel therapeutic strategy for cervical cancer harboring FGFR3-TACC3 fusions. Oncogenesis 7, 4 (2018).
Lasorella, A., Sanson, M. & Iavarone, A. FGFR-TACC gene fusions in human glioma. Neuro Oncol. 19, 475–483 (2016).
Singh, D. et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337, 1231–1235 (2012).
Weinstein, J. N. et al. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).
Carneiro, B. A. et al. FGFR3–TACC3: a novel gene fusion in cervical cancer. Gynecol. Oncol. Rep. 13, 53–56 (2015).
Ren, R. Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer 5, 172–183 (2005).
An, X. et al. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk. Res. 34, 1255–1268 (2010).
Peters, S. et al. Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer. N. Engl. J. Med. 377, 829–838 (2017).
Abou-Alfa, G. K. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 21, 671–684 (2020).
Kang, C. Infigratinib: first approval. Drugs 81, 1355–1360 (2021).
Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).
Li, Z. et al. Efficacy of crizotinib among different types of ROS1 fusion partners in patients with ROS1-rearranged non-small cell lung cancer. J. Thorac. Oncol. 13, 987–995 (2018).
Lin, J. J. et al. Impact of EML4-ALK variant on resistance mechanisms and clinical outcomes in ALK-positive lung cancer. J. Clin. Oncol. 36, 1199–1206 (2018).
Huber, D., Voith von Voithenberg, L. & Kaigala, G. V. Fluorescence in situ hybridization (FISH): history, limitations and what to expect from micro-scale FISH?. Micro Nano Eng. 1, 15–24 (2018).
Schröck, E. et al. Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497 (1996).
Volpi, E. V. & Bridger, J. M. FISH glossary: an overview of the fluorescence in situ hybridization technique. BioTechniques 45, 385–409 (2008).
Xie, N. G. et al. Designing highly multiplex PCR primer sets with Simulated Annealing Design using Dimer Likelihood Estimation (SADDLE). Nat. Commun. 13, 1881 (2022).
Mohajeri, A. et al. Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor. Genes Chromosomes Cancer 52, 873–886 (2013).
Weber, D. et al. Accurate detection of tumor-specific gene fusions reveals strongly immunogenic personal neo-antigens. Nat. Biotechnol. 40, 1276–1284 (2022).
Haas, B. J. et al. Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods. Genome Biol. 20, 213 (2019).
Wu, Y. et al. Enhanced detection of novel low-frequency gene fusions via high-yield ligation and multiplexed enrichment sequencing. Angew. Chem. Int. Ed. Engl. 63, e202316484 (2024).
Zheng, Z. et al. Anchored multiplex PCR for targeted next-generation sequencing. Nat. Med. 20, 1479–1484 (2014).
Peng, Q. et al. Targeted single primer enrichment sequencing with single end duplex-UMI. Sci. Rep. 9, 4810 (2019).
Heydt, C. et al. Detection of gene fusions using targeted next-generation sequencing: a comparative evaluation. BMC Med. Genom. 14, 62 (2021).
Song, P. et al. Selective multiplexed enrichment for the detection and quantitation of low-fraction DNA variants via low-depth sequencing. Nat. Biomed. Eng. 5, 690–701 (2021).
Li, L. et al. High efficiency hydrodynamic DNA fragmentation in a bubbling system. Sci. Rep. 7, 40745 (2017).
Aigrain, L., Gu, Y. & Quail, M. A. Quantitation of next generation sequencing library preparation protocol efficiencies using droplet digital PCR assays – a systematic comparison of DNA library preparation kits for Illumina sequencing. BMC Genom. 17, 458 (2016).
Wang, L. et al. 3′ Branch ligation: a novel method to ligate non-complementary DNA to recessed or internal 3’OH ends in DNA or RNA. DNA Res. 26, 45–53 (2019).
Song, P. et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nat. Biomed. Eng. 6, 232–245 (2022).
Park, H. J., Baek, I., Cheang, G., Solomon, J. P. & Song, W. Comparison of RNA-based next-generation sequencing assays for the detection of NTRK gene fusions. J. Mol. Diagn. 23, 1443–1451 (2021).
Sohn, J. et al. Ultrafast prediction of somatic structural variations by filtering out reads matched to pan-genome k-mer sets. Nat. Biomed. Eng. 7, 853–866 (2023).
Carstensen, B., Simpson, J. & Gurrin, L. C. Statistical models for assessing agreement in method comparison studies with replicate measurements. Int. J. Biostat. 4, 16 (2008).
Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50, D988–D995 (2022).
Bergeron, D. et al. RNA-seq for the detection of gene fusions in solid tumors: development and validation of the JAX FusionSeq 2.0 assay. J. Mol. Med. 100, 323–335 (2022).
Palomares, M.-A. et al. Systematic analysis of TruSeq, SMARTer and SMARTer Ultra-Low RNA-seq kits for standard, low and ultra-low quantity samples. Sci. Rep. 9, 7550 (2019).
Kerbs, P. et al. Gene fusion detection by RNA-seq in acute myeloid leukemia (AML). Blood 134, 4655 (2019).
Benelli, M. et al. Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript. Bioinformatics 28, 3232–3239 (2012).
Haas, B. J. et al. STAR-Fusion: fast and accurate fusion transcript detection from RNA-seq. Preprint at bioRxiv https://doi.org/10.1101/120295 (2017).
Nicorici, D. et al. FusionCatcher – a tool for finding somatic fusion genes in paired-end RNA-sequencing data. Preprint at bioRxiv https://doi.org/10.1101/011650 (2014).
Uhrig, S. et al. Accurate and efficient detection of gene fusions from RNA sequencing data. Genome Res. 31, 448–460 (2021).
Si, Y. et al. Extended enrichment for ultrasensitive detection of low-frequency mutations by long blocker displacement amplification. Angew. Chem. Int. Ed. Engl. 63, e202400551 (2024).
Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2012).
Shiroguchi, K., Jia, T. Z., Sims, P. A. & Xie, X. S. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes. Proc. Natl Acad. Sci. USA 109, 1347–1352 (2012).
Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. NAR Genom. Bioinform. 3, lqab019 (2021).
Lu, B., Jiang, R., Xie, B., Wu, W. & Zhao, Y. Fusion genes in gynecologic tumors: the occurrence, molecular mechanism and prospect for therapy. Cell Death Dis. 12, 783 (2021).
Liu, S. et al. Comprehensive evaluation of fusion transcript detection algorithms and a meta-caller to combine top performing methods in paired-end RNA-seq data. Nucleic Acids Res. 44, e47 (2016).
Dehghannasiri, R. et al. Improved detection of gene fusions by applying statistical methods reveals oncogenic RNA cancer drivers. Proc. Natl Acad. Sci. USA 116, 15524–15533 (2019).
Heyer, E. E. et al. Diagnosis of fusion genes using targeted RNA sequencing. Nat. Commun. 10, 1388 (2019).
Cappellen, D. et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat. Genet. 23, 18–20 (1999).
Choi, C. H., Chung, J.-Y., Kim, J.-H., Kim, B.-G. & Hewitt, S. M. Expression of fibroblast growth factor receptor family members is associated with prognosis in early stage cervical cancer patients. J. Transl. Med. 14, 124 (2016).
Hiranuma, K. et al. Rare FGFR fusion genes in cervical cancer and transcriptome-based subgrouping of patients with a poor prognosis. Cancer Med. 12, 17835–17848 (2023).
Loeb, S. & Catalona, W. J. Prostate-specific antigen in clinical practice. Cancer Lett. 249, 30–39 (2007).
Schatteman, P. H., Hoekx, L., Wyndaele, J. J., Jeuris, W. & van Marck, E. Inflammation in prostate biopsies of men without prostatic malignancy or clinical prostatitis: correlation with total serum PSA and PSA density. Eur. Urol. 37, 404–412 (2000).
Kumar-Sinha, C., Tomlins, S. A. & Chinnaiyan, A. M. Recurrent gene fusions in prostate cancer. Nat. Rev. Cancer 8, 497–511 (2008).
Attard, G. et al. Prostate cancer. Lancet 387, 70–82 (2016).
Huang, L. et al. FPIA: a database for gene fusion profiling and interactive analyses. Int. J. Cancer 150, 1504–1511 (2022).
Luo, J. H. et al. Discovery and classification of fusion transcripts in prostate cancer and normal prostate tissue. Am. J. Pathol. 185, 1834–1845 (2015).
Kong, D. P. et al. Prevalence and clinical application of TMPRSS2-ERG fusion in Asian prostate cancer patients: a large-sample study in Chinese people and a systematic review. Asian J. Androl. 22, 200–207 (2020).
Ren, S. et al. RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res. 22, 806–821 (2012).
Pettersson, A. et al. The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol. Biomark. Prev. 21, 1497–1509 (2012).
Soller, M. J. et al. Confirmation of the high frequency of the TMPRSS2/ERG fusion gene in prostate cancer. Genes Chromosomes Cancer 45, 717–719 (2006).
Tomlins, S. A. et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci. Transl. Med. 3, 94ra72 (2011).
Qu, X., Yeung, C., Coleman, I., Nelson, P. S. & Fang, M. Comparison of four next generation sequencing platforms for fusion detection: Oncomine by ThermoFisher, AmpliSeq by illumina, FusionPlex by ArcherDX, and QIAseq by QIAGEN. Cancer Genet. 243, 11–18 (2020).
Zhang, J.-T. et al. Longitudinal undetectable molecular residual disease defines potentially cured population in localized non-small cell lung cancer. Cancer Discov. 12, 1690–1701 (2022).
Romano, G. et al. A preexisting rare PIK3CA(E545K) subpopulation confers clinical resistance to MEK plus CDK4/6 inhibition in NRAS melanoma and is dependent on S6K1 signaling. Cancer Discov. 8, 556–567 (2018).
Song, P. et al. Programming bulk enzyme heterojunctions for biosensor development with tetrahedral DNA framework. Nat. Commun. 11, 838 (2020).
Zhao, H. et al. Programming super DNA-enzyme molecules for on-demand enzyme activity modulation. Angew. Chem. Int. Ed. Engl. 62, e202214450 (2023).
Shao, L. et al. CMTM5 exhibits tumor suppressor activities and is frequently silenced by methylation in carcinoma cell lines. Clin. Cancer Res. 13, 5756–5762 (2007).
Bueno, R. et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat. Genet. 48, 407–416 (2016).
Sondka, Z. et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 18, 696–705 (2018).
Kim, P. et al. FusionGDB 2.0: fusion gene annotation updates aided by deep learning. Nucleic Acids Res. 50, D1221–d1230 (2022).
Hu, X. et al. TumorFusions: an integrative resource for cancer-associated transcript fusions. Nucleic Acids Res. 46, D1144–d1149 (2018).
Zhang, J. X. et al. A deep learning model for predicting next-generation sequencing depth from DNA sequence. Nat. Commun. 12, 4387 (2021).
Lebedev, A. V. et al. Hot Start PCR with heat-activatable primers: a novel approach for improved PCR performance. Nucleic Acids Res. 36, e131 (2008).
Dobosy, J. R. et al. RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnol. 11, 80 (2011).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
Boratyn, G. M. et al. BLAST: a more efficient report with usability improvements. Nucleic Acids Res. 41, W29–W33 (2013).
Chen, T. et al. The Genome Sequence Archive Family: toward explosive data growth and diverse data types. Genomics Proteomics Bioinformatics 19, 578–583 (2021).
CNCB-NGDC Members and Partners. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2025. Nucleic Acids Res. 53, D30–d44 (2025).
Xiu, X. et al. Anchored random reverse primer sequencing for quantitative detection of novel gene fusions. Datasets. figshare https://figshare.com/articles/dataset/Source_Data/29492369 (2025).
Xiu, X. et al. Anchored random reverse primer sequencing for quantitative detection of novel gene fusions. GitHub https://github.com/NABMElab/ARRP-seq (2025).
