Global profiling of arginine reactivity and ligandability in the human proteome

global-profiling-of-arginine-reactivity-and-ligandability-in-the-human-proteome
Global profiling of arginine reactivity and ligandability in the human proteome
  • Jin, Y., Jana, S., Abbasov, M. E. & Lin, H. Antibiotic target discovery by integrated phenotypic and activity-based profiling of electrophilic fragments. Cell Chem. Biol. 32, 434–448.e9 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, X. & Cravatt, B. F. Chemical proteomics–guided discovery of covalent ligands for cancer proteins. Annu. Rev. Cancer Biol. 8, 155–175 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niphakis, M. J. & Cravatt, B. F. Ligand discovery by activity-based protein profiling. Cell Chem. Biol. 31, 1636–1651 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Offensperger, F. et al. Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells. Science 384, eadk5864 (2024).

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi, Y., Fu, L., Yang, J. & Carroll, K. S. Wittig reagents for chemoselective sulfenic acid ligation enables global site stoichiometry analysis and redox-controlled mitochondrial targeting. Nat. Chem. 13, 1140–1150 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu, L. et al. Nucleophilic covalent ligand discovery for the cysteine redoxome. Nat. Chem. Biol. 19, 1309–1319 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin, W. et al. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat. Chem. Biol. 15, 983–991 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Hacker, S. M. et al. Global profiling of lysine reactivity and ligandability in the human proteome. Nat. Chem. 9, 1181–1190 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abbasov, M. E. et al. A proteome-wide atlas of lysine-reactive chemistry. Nat. Chem. 13, 1081–1092 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hahm, H. S. et al. Global targeting of functional tyrosines using sulfur-triazole exchange chemistry. Nat. Chem. Biol. 16, 150–159 (2020).

    Article  PubMed  CAS  Google Scholar 

  • Sun, F., Suttapitugsakul, S. & Wu, R. An azo coupling-based chemoproteomic approach to systematically profile the tyrosine reactivity in the human proteome. Anal. Chem. 93, 10334–10342 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, Y. et al. Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes. Nat. Chem. 15, 1616–1625 (2023).

    Article  PubMed  CAS  Google Scholar 

  • Lin, S. X. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bach, K., Beerkens, B. L. H., Zanon, P. R. A. & Hacker, S. M. Light-activatable, 2,5-disubstituted tetrazoles for the proteome-wide profiling of aspartates and glutamates in living bacteria. ACS Cent. Sci. 6, 546–554 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma, N. et al. 2H-Azirine-based reagents for chemoselective bioconjugation at carboxyl residues inside live cells. J. Am. Chem. Soc. 142, 6051–6059 (2020).

    Article  PubMed  CAS  Google Scholar 

  • Xie, X. et al. Oxidative cyclization reagents reveal tryptophan cation–π interactions. Nature 627, 680–687 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhai, Y. et al. Global profiling of functional histidines in live cells using small-molecule photosensitizer and chemical probe relay labelling. Nat. Chem. 16, 1546–1557 (2024).

    Article  PubMed  CAS  Google Scholar 

  • Sharma, H. A. et al. Proteomic ligandability maps of phosphorus(V) stereoprobes identify covalent TLCD1 inhibitors. J. Am. Chem. Soc. 147, 15554–15566 (2025).

    Article  PubMed  CAS  Google Scholar 

  • Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, Q. et al. Quantitative chemoproteomics reveals dopamine’s protective modification of Tau. Nat. Chem. Biol. 21, 1341–1350 (2025).

    Article  PubMed  CAS  Google Scholar 

  • Wang, C., Weerapana, E., Blewett, M. M. & Cravatt, B. F. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat. Methods 11, 79–85 (2014).

    Article  PubMed  Google Scholar 

  • Hodges, A. J. et al. Histone sprocket arginine residues are important for gene expression, DNA repair and cell viability in Saccharomyces cerevisiae. Genetics 200, 795–806 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogan, A. A. & Thorn, K. S. Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Bartlett, G. J., Porter, C. T., Borkakoti, N. & Thornton, J. M. Analysis of catalytic residues in enzyme active sites. J. Mol. Biol. 324, 105–121 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Gupta, M. N. & Uversky, V. N. Biological importance of arginine: a comprehensive review of the roles in structure, disorder, and functionality of peptides and proteins. Int. J. Biol. Macromol. 257, 128646 (2024).

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann, J., Clancy, K. W. & Thompson, P. R. Chemical biology of protein arginine modifications in epigenetic regulation. Chem. Rev. 115, 5413–5461 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720–734.e15 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofweber, M. et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706–719.e13 (2018).

    Article  PubMed  CAS  Google Scholar 

  • Hellwig, M. & Henle, T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew. Chem. Int. Ed. 53, 10316–10329 (2014).

    Article  CAS  Google Scholar 

  • Takahashi, K. The reaction of phenylglyoxal with arginine residues in proteins. J. Biol. Chem. 243, 6171–6179 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Dovgan, I. et al. Arginine-selective bioconjugation with 4-azidophenyl glyoxal: application to the single and dual functionalisation of native antibodies. Org. Biomol. Chem. 16, 1305–1311 (2018).

    Article  PubMed  CAS  Google Scholar 

  • Jones, A. X. et al. Improving mass spectrometry analysis of protein structures with arginine-selective chemical cross-linkers. Nat. Commun. 10, 3911 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewallen, D. M. et al. Chemical proteomic platform to identify citrullinated proteins. ACS Chem. Biol. 10, 2520–2528 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bicker, K. L., Subramanian, V., Chumanevich, A. A., Hofseth, L. J. & Thompson, P. R. Seeing citrulline: development of a phenylglyoxal-based probe to visualize protein citrullination. J. Am. Chem. Soc. 134, 17015–17018 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zanon, P. R. A. et al. Profiling the proteome-wide selectivity of diverse electrophiles. Nat. Chem. 17, 1712–1721 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, Q. et al. Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method. Proc. Natl Acad. Sci. USA 119, e2205255119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, Z., Wang, K. & Ye, M. Photoreactive probe-based strategy enables the specific identification of the transient substrates of methyltransferase at the proteome scale. Anal. Chem. 95, 12580–12585 (2023).

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y. et al. Enabling global analysis of protein citrullination via biotin thiol tag-assisted mass spectrometry. Anal. Chem. 94, 17895–17903 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, P. et al. Cell-active, arginine-targeting irreversible covalent inhibitors for non-kinases and kinases. Angew. Chem. Int. Ed. 64, e202422372 (2025).

    Article  CAS  Google Scholar 

  • Zhang, Z., Morstein, J., Ecker, A. K., Guiley, K. Z. & Shokat, K. M. Chemoselective covalent modification of K-Ras(G12R) with a small molecule electrophile. J. Am. Chem. Soc. 144, 15916–15921 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prosser, L., Emenike, B., Sihag, P., Shirke, R. & Raj, M. Chemical carbonylation of arginine in peptides and proteins. J. Am. Chem. Soc. 147, 10139–10150 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    Article  CAS  Google Scholar 

  • Weerapana, E., Speers, A. E. & Cravatt, B. F. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)—a general method for mapping sites of probe modification in proteomes. Nat. Protoc. 2, 1414–1425 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Chang, J. W., Lee, G., Coukos, J. S. & Moellering, R. E. Profiling reactive metabolites via chemical trapping and targeted mass spectrometry. Anal. Chem. 88, 6658–6661 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2021).

    Article  PubMed Central  Google Scholar 

  • Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492 (2023).

    Article  PubMed  CAS  Google Scholar 

  • Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A. J. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Yang, F., Gao, J., Che, J., Jia, G. & Wang, C. A dimethyl-labeling-based strategy for site-specifically quantitative chemical proteomics. Anal. Chem. 90, 9576–9582 (2018).

    Article  PubMed  CAS  Google Scholar 

  • You, K. et al. PhaSepDB: a database of liquid-liquid phase separation related proteins. Nucleic Acids Res. 48, D354–D359 (2019).

    Article  PubMed Central  Google Scholar 

  • Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 13, 1265 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burke, D. F. et al. Towards a structurally resolved human protein interaction network. Nat. Struct. Mol. Biol. 30, 216–225 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dao, T. P. et al. Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol. Cell 69, 965–978.e6 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamazaki, T. et al. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70, 1038–1053.e7 (2018).

    Article  PubMed  CAS  Google Scholar 

  • Yang, F., Jia, G., Guo, J., Liu, Y. & Wang, C. Quantitative chemoproteomic profiling with data-independent acquisition-based mass spectrometry. J. Am. Chem. Soc. 144, 901–911 (2022).

    Article  PubMed  CAS  Google Scholar 

  • Berkholz, D. S., Faber, H. R., Savvides, S. N. & Karplus, P. A. Catalytic cycle of human glutathione reductase near 1 Å resolution. J. Mol. Biol. 382, 371–384 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, R. et al. Pleiotropic effects of a mitochondrion-targeted glutathione reductase inhibitor on restraining tumor cells. Eur. J. Med. Chem. 248, 115069 (2023).

    Article  PubMed  CAS  Google Scholar 

  • Burger, N. et al. The human zinc-binding cysteine proteome. Cell 188, 832–850.e27 (2025).

    Article  PubMed  CAS  Google Scholar 

  • Board, P. G. et al. S-(4-nitrophenacyl)glutathione is a specific substrate for glutathione transferase omega 1-1. Anal. Biochem. 374, 25–30 (2008).

  • Ramkumar, K. et al. Mechanistic evaluation and transcriptional signature of a glutathione S-transferase omega 1 inhibitor. Nat. Commun. 7, 13084 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, Y. et al. Proteome-wide ligand and target discovery by using strain-enabled cyclopropane electrophiles. J. Am. Chem. Soc. 146, 20823–20836 (2024).

    Article  PubMed  CAS  Google Scholar 

  • Baltgalvis, K. A. et al. Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase. Nature 629, 435–442 (2024).

    Article  PubMed  CAS  Google Scholar 

  • Uechi, H. et al. Small-molecule dissolution of stress granules by redox modulation benefits ALS models. Nat. Chem. Biol. 21, 1577–1588 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanikawa, C. et al. Citrullination of RGG motifs in FET proteins by PAD4 regulates protein aggregation and ALS susceptibility. Cell Rep. 22, 1473–1483 (2018).

    Article  PubMed  CAS  Google Scholar 

  • Hofweber, M. & Dormann, D. Friend or foe—post-translational modifications as regulators of phase separation and RNP granule dynamics. J. Biol. Chem. 294, 7137–7150 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Communi, D., Lecocq, R. & Erneux, C. Arginine 343 and 350 are two active site residues involved in substrate binding by human type I D-myo-inositol 1,4,5-trisphosphate 5-phosphatase. J. Biol. Chem. 271, 11676–11683 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Chen, G. & Chen, X. Arginine residues in the active site of human phenol sulfotransferase (SULT1A1). J. Biol. Chem. 278, 36358–36364 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Yan, J., He, G., Yan, F., Zhang, J. & Zhang, G. The dicarbonylation of indoles via Friedel–Crafts reaction with dicarbonyl nitrile generated in situ and retro-cyanohydrination. RSC Adv. 6, 44029–44033 (2016).

    Article  CAS  Google Scholar 

  • Hirapara, P. et al. CO2-assisted synthesis of non-symmetric α-diketones directly from aldehydes via C–C bond formation. Green Chem. 19, 5356–5360 (2017).

    Article  CAS  Google Scholar 

  • Li, J. et al. ACR-based probe for the quantitative profiling of histidine reactivity in the human proteome. J. Am. Chem. Soc. 145, 5252–5260 (2023).

    Article  PubMed  CAS  Google Scholar 

  • Ma, J. et al. iProX: an integrated proteome resource. Nucleic Acids Res. 47, D1211–D1217 (2019).

    Article  PubMed  Google Scholar 

  • Wang, Y. Global profiling of arginine reactivity and ligandability in the human proteome. Zenodo https://doi.org/10.5281/zenodo.15493178 (2025).