References
-
Ko, H. et al. The emergence of functional microcircuits in visual cortex. Nature 496, 96–100 (2013).
-
Schneeberger, M., Gomis, R. & Claret, M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J. Endocrinol. 220, T25–T46 (2014).
-
Xu, S. et al. Neural circuits for social interactions: from microcircuits to input-output circuits. Frontiers in neural circuits 15, 768294 (2021).
-
Haraguchi, Y., Shimizu, T., Yamato, M., Kikuchi, A. & Okano, T. Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials 27, 4765–4774 (2006).
-
Stožer, A. et al. Functional connectivity in islets of Langerhans from mouse pancreas tissue slices. PLoS Comput. Biol. 9, e1002923 (2013).
-
Watkins, S. C. & Salter, R. D. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 23, 309–318 (2005).
-
Quicke, P. et al. Voltage imaging reveals the dynamic electrical signatures of human breast cancer cells. Communications Biology 5, 1178 (2022).
-
Peinado, P. et al. Intrinsic electrical activity drives small-cell lung cancer progression. Nature 1–11 (2025).
-
Prindle, A. et al. Ion channels enable electrical communication in bacterial communities. Nature 527, 59–63 (2015).
-
Quintanilla, C. A. et al. High-density multielectrode arrays bring cellular resolution to neuronal activity and network analyses of corticospinal motor neurons. Sci Rep 15, 732 (2025).
-
Obien, M. E. J., Deligkaris, K., Bullmann, T., Bakkum, D. J. & Frey, U. Revealing neuronal function through microelectrode array recordings. Front. Neurosci. 8, (2015).
-
Xie, Y. et al. Materials and devices for high-density, high-throughput micro-electrocorticography arrays. Fundamental Research 5, 17–28 (2025).
-
Dolenšek, J., Pohorec, V., Skelin Klemen, M., Gosak, M. & Stožer, A. Ultrafast multicellular calcium imaging of calcium spikes in mouse beta cells in tissue slices. Acta Physiol. 241, e14261 (2025).
-
Johnston, N. R. et al. Beta cell hubs dictate pancreatic islet responses to glucose. Cell Metab. 24, 389–401 (2016).
-
Kim, S. A., Kim, S. J., Moon, H. & Jun, S. B. In vivo optical neural recording using fiber-based surface plasmon resonance. Optics Lett. 37, 614–616 (2012).
-
Liu, X. et al. Plasmonic-based electrochemical impedance imaging of electrical activities in single cells. Angew Chem Int Ed 56, 8855–8859 (2017).
-
Habib, A. et al. Electro-plasmonic nanoantenna: A nonfluorescent optical probe for ultrasensitive label-free detection of electrophysiological signals. Sci. Adv. 5, 9786 (2019).
-
Barry, J. F. et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. U.S.A. 113, 14133–14138 (2016).
-
Hall, L. T. et al. High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond. Sci. Rep. 2, 401 (2012).
-
Balch, H. B. et al. Graphene electric field sensor enables single shot label-free imaging of bioelectric potentials. Nano Lett. 21, 4944–4949 (2021).
-
Rothenhäusler, B. & Knoll, W. Surface–plasmon microscopy. Nature 332, 615–617 (1988).
-
Yeatman, E. & Ash, E. A. Surface plasmon microscopy. Electron. Lett. (UK) 23, 1091–1092 (1987).
-
Peterson, A. W., Halter, M., Tona, A. & Plant, A. L. High resolution surface plasmon resonance imaging for single cells. BMC Cell Biol 15, 35 (2014).
-
Robelek, R. & Wegener, J. Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy. Biosens. Bioelectron. 25, 1221–1224 (2010).
-
Campbell, C. T. & Kim, G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28, 2380–2392 (2007).
-
Wang, W. et al. Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells. Nat. Chem. 4, 846–853 (2012).
-
Moreira, B., Tuoriniemi, J., Kouchak Pour, N., Mihalcikova, L. & Safina, G. Surface plasmon resonance for measuring exocytosis from populations of PC12 cells: mechanisms of signal formation and assessment of analytical capabilities. Analytical Chemistry 89, 3069–3077 (2017).
-
Ahn, H. et al. Plasmonic sensing, imaging, and stimulation techniques for neuron studies. Biosens. Bioelectron. 182, 113150 (2021).
-
Abadian, P. N., Tandogan, N., Jamieson, J. J. & Goluch, E. D. Using surface plasmon resonance imaging to study bacterial biofilms. Biomicrofluidics 8, (2014).
-
Boulade, M. et al. Early detection of bacteria using SPR imaging and event counting: experiments with Listeria monocytogenes and Listeria innocua. RSC Adv. 9, 15554–15560 (2019).
-
Hemmerová, E. & Homola, J. Combining plasmonic and electrochemical biosensing methods. Biosens. Bioelectron. 251, 116098 (2024).
-
Zhou, X.-L., Yang, Y., Wang, S. & Liu, X.-W. Surface Plasmon Resonance Microscopy: From Single-Molecule Sensing to Single-Cell Imaging. Angew. Chem. Int. Ed. 59, 1776–1785 (2020).
-
Thadson, K., Visitsattapongse, S. & Pechprasarn, S. Deep learning-based single-shot phase retrieval algorithm for surface plasmon resonance microscope based refractive index sensing application. Sci Rep 11, 16289 (2021).
-
Nizamov, S., Sazdovska, S. D. & Mirsky, V. M. A review of optical methods for ultrasensitive detection and characterization of nanoparticles in liquid media with a focus on the wide field surface plasmon microscopy. Anal. Chim. Acta 1204, 339633 (2022).
-
Somekh, M. G., Liu, S., Velinov, T. S. & See, C. W. High-resolution scanning surface-plasmon microscopy. Appl. Opt. 39, 6279–6287 (2000).
-
Tan, H.-M., Pechprasarn, S., Zhang, J., Pitter, M. C. & Somekh, M. G. High resolution quantitative angle-scanning widefield surface plasmon microscopy. Sci. Rep. 6, 20195 (2016).
-
Huang, B., Yu, F. & Zare, R. N. Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal. Chem. 79, 2979–2983 (2007).
-
Son, T. et al. Enhanced surface plasmon microscopy based on multi-channel spatial light switching for label-free neuronal imaging. Biosens. Bioelectron. 146, 111738 (2019).
-
Toma, K., Kano, H. & Offenhäusser, A. Label-free measurement of cell–electrode cleft gap distance with high spatial resolution surface plasmon microscopy. ACS Nano 8, 12612–12619 (2014).
-
Wang, W. et al. Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy. Nat. Chem. 3, 249–255 (2011).
-
Abayzeed, S. A. Plasmonic-based impedance microspectroscopy of optically heterogeneous samples. Biomed. Opt. Express 11, 6168–6180 (2020).
-
Abayzeed, S. A., Smith, R. J., Webb, K. F., Somekh, M. G. & See, C. W. Sensitive detection of voltage transients using differential intensity surface plasmon resonance system. Opt. Express 25, 31552–31567 (2017).
-
Potdar, P., Kharat, A., Sanap, A., Kheur, S. & Bhonde, R. Pancreatic β cell models for screening insulin secretagogues and cytotoxicity. J. Appl. Toxicology 45, 89–106 (2025).
-
Dalle, S. et al. Miniglucagon (glucagon 19–29), a potent and efficient inhibitor of secretagogue-induced insulin release through a Ca2+ pathway. J. Biol. Chem. 274, 10869–10876 (1999).
-
Ashcroft, F. M. et al. Stimulus-secretion coupling in pancreatic β cells. J. Cell. Biochem. 55, 54–65 (1994).
-
Dean, P. M. & Matthews, E. K. Glucose-induced electrical activity in pancreatic islet cells. J. Physiol. 210, 255–264 (1970).
-
Yang, S.-N. et al. Ionic mechanisms in pancreatic β cell signaling. Cell. Mol. Life Sci. 71, 4149–4177 (2014).
-
Somekh, M. G., Regules-Medel, K. & Abayzeed, S. A. Common framework for surface plasmon binding and voltage sensing and microscopy with transmission line representation. J. Opt. Soc. Am. A 41, C90–C98 (2024).
-
Quesada, I. et al. Glucose induces opposite intracellular Ca2+ concentration oscillatory patterns in identified α-and β-cells within intact human islets of Langerhans. Diabetes 55, 2463–2469 (2006).
-
Pechprasarn, S. & Somekh, M. G. Surface plasmon microscopy: resolution, sensitivity and crosstalk. J. Microsc. 246, 287–297 (2012).
-
Vasseur, M., Debuyser, A. & Joffre, M. Sensitivity of pancreatic beta cell to calcium channel blockers: an electrophysiologic study of verapamil and nifedipine. Fundamemntal Clinical Pharma 1, 95–113 (1987).
-
Abayzeed, S. A., Smith, R. J., See, C. W. & Somekh, M. G. Analysis of noise in differential and ratiometric biosensing systems. Sens. Actuators, B Chem. 260, 1059–1067 (2018).
-
Gresch, A. et al. Resolving spatiotemporal electrical signaling within the islet via CMOS microelectrode arrays. Diabetes 74, 343–354 (2025).
-
Belykh, I. & Hasler, M. Mesoscale and clusters of synchrony in networks of bursting neurons. Chaos: An Interdisciplinary Journal of Nonlinear Science 21, (2011).
-
Jiang, N., Zhuo, X. & Wang, J. Active Plasmonics: Principles, Structures, and Applications. Chem. Rev. 118, 3054–3099 (2018).
-
Habib, A., Zhu, X., Fong, S. & Yanik, A. A. Active plasmonic nanoantenna: an emerging toolbox from photonics to neuroscience. Nanophotonics 9, 3805–3829 (2020).
-
Malkiel, I. et al. Plasmonic nanostructure design and characterization via deep learning. Light: Sci. Appl. 7, 60 (2018).
-
Moon, G. et al. Machine learning-based design of meta-plasmonic biosensors with negative index metamaterials. Biosens. Bioelectron. 164, 112335 (2020).
-
Levin, M., Pezzulo, G. & Finkelstein, J. M. Endogenous bioelectric signaling networks: exploiting voltage gradients for control of growth and form. Annu. Rev. Biomed. Eng. 19, 353–387 (2017).
-
Manicka, S. & Levin, M. Modeling somatic computation with non-neural bioelectric networks. Sci. Rep. 9, 18612 (2019).
-
Fraser, S. P. et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin. Cancer Res. 11, 5381–5389 (2005).
-
Tian, B. & Lieber, C. M. Nanowired Bioelectric Interfaces: Focus Review. Chem. Rev. 119, 9136–9152 (2019).
-
Rivnay, J. et al. Integrating bioelectronics with cell-based synthetic biology. Nature Reviews Bioengineering 1–16 (2025).
-
Wang, Y. et al. An optoelectrochemical synapse based on a single-component n-type mixed conductor. Nat. Commun. 16, 1–14 (2025).
-
Smirnova, L. et al. Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish. Frontiers in Science 1, 1017235 (2023).
-
Scholkmann, F. Two emerging topics regarding long-range physical signaling in neurosystems: Membrane nanotubes and electromagnetic fields. J. Integr. Neurosci. 14, 135–153 (2015).
-
Bikson, M. et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J. Physiol. 557, 175–190 (2004).
-
Funk, R. H. Endogenous electric fields as guiding cue for cell migration. Front. Physiol. 6, 143 (2015).
-
Messerli, M. A. & Graham, D. M. Extracellular electrical fields direct wound healing and regeneration. Biol. Bull. 221, 79–92 (2011).
-
Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).
-
Kreysing, E., Hassani, H., Hampe, N. & Offenhäusser, A. Nanometer-resolved mapping of cell–substrate distances of contracting cardiomyocytes using surface plasmon resonance microscopy. ACS Nano 12, 8934–8942 (2018).
-
Meyer, R. A. Light scattering from biological cells: dependence of backscatter radiation on membrane thickness and refractive index. Appl. Opt., AO 18, 585–588 (1979).
-
Barer, R. & Joseph, S. Refractometry of living cells part I. basic principles. Journal of Cell Science s3–95, 399–423 (1954).
-
Schürmann, M., Scholze, J., Müller, P., Guck, J. & Chan, C. J. Cell nuclei have lower refractive index and mass density than cytoplasm. J. Biophotonics 9, 1068–1076 (2016).
-
Lachaux, J.-P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999).
-
Palva, J. M. et al. Ghost interactions in MEG/EEG source space: A note of caution on inter-areal coupling measures. Neuroimage 173, 632–643 (2018).
-
Schmidt, H., Petkov, G., Richardson, M. P. & Terry, J. R. Dynamics on networks: the role of local dynamics and global networks on the emergence of hypersynchronous neural activity. PLoS Comput. Biol. 10, e1003947 (2014).
-
Schreiber, T. & Schmitz, A. Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77, 635–638 (1996).
