Engineering bidirectional chloroplast promoters for tunable co-expression of multiple genes in microalgae (Chlamydomonas reinhardtii)

engineering-bidirectional-chloroplast-promoters-for-tunable-co-expression-of-multiple-genes-in-microalgae-(chlamydomonas-reinhardtii)
Engineering bidirectional chloroplast promoters for tunable co-expression of multiple genes in microalgae (Chlamydomonas reinhardtii)

References

  1. Kumar, G. et al. Bioengineering of microalgae: recent advances, perspectives, and regulatory challenges for industrial application. Front. Bioeng. Biotechnol. 8, 914 (2020).

    Google Scholar 

  2. Rasala, B. A. & Mayfield, S. P. The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioeng. Bugs 2, 50–54 (2011).

    Google Scholar 

  3. Harris, E. H. Chlamydomonas as a model organism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 363–406 (2001).

    Google Scholar 

  4. Fabris, M. et al. Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy. Front. Plant Sci. 11, 279 (2020).

    Google Scholar 

  5. Taunt, H. N., Stoffels, L. & Purton, S. Green biologics: the algal chloroplast as a platform for making biopharmaceuticals. Bioengineered 9, 48–54 (2018).

    Google Scholar 

  6. Neupert, J. et al. An epigenetic gene silencing pathway selectively acting on transgenic DNA in the green alga Chlamydomonas. Nat. Commun. 11, 6269 (2020).

    Google Scholar 

  7. Purton, S. Tools and techniques for chloroplast transformation of Chlamydomonas. Adv. Exp. Med Biol. 616, 34–45 (2007).

    Google Scholar 

  8. Ramesh, V. M., Bingham, S. E. & Webber, A. N. A simple method for chloroplast transformation in Chlamydomonas reinhardtii. Methods Mol. Biol. 684, 313–320 (2011).

    Google Scholar 

  9. Mordaka, P. M. et al. Regulation of nucleus-encoded trans-acting factors allows orthogonal fine-tuning of multiple transgenes in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J n/a (2024). https://doi.org/10.1111/pbi.14557

  10. Larrea-Alvarez, M. & Purton, S. Multigenic engineering of the chloroplast genome in the green alga Chlamydomonas reinhardtii. Microbiology 166, 510–515 (2020).

    Google Scholar 

  11. Yeon, J., Miller, S. M. & Dejtisakdi, W. New synthetic operon vectors for expressing multiple proteins in the chlamydomonas reinhardtii chloroplast. Genes 14, 368 (2023).

    Google Scholar 

  12. Macedo-Osorio, K. S. et al. Intercistronic expression elements (IEE) from the chloroplast of Chlamydomonas reinhardtii can be used for the expression of foreign genes in synthetic operons. Plant Mol. Biol. 98, 303–317 (2018).

    Google Scholar 

  13. Guo, Y., Xiong, H., Fan, Q. & Duanmu, D. Heterologous gene expression in chlamydomonas reinhardtii chloroplast by heterologous promoters and terminators, intercistronic expression elements and minichromosome. Micro. Biotechnol. 17, e70069 (2024).

    Google Scholar 

  14. Melero-Cobo, X. et al. MoCloro: an extension of the Chlamydomonas reinhardtii modular cloning toolkit for microalgal chloroplast engineering. Physiol. Plant 177, e70088 (2025).

    Google Scholar 

  15. Inckemann, R. M. et al. A modular high-throughput approach for advancing synthetic biology in the chloroplast of Chlamydomonas. Nat, Plants (2025). https://doi.org/10.1038/s41477-025-02126-2

  16. Zhang, P. et al. Deep flanking sequence engineering for efficient promoter design using DeepSEED. Nat. Commun. 14, 6309 (2023).

    Google Scholar 

  17. Altendorfer, E., Mundlos, S. & Mayer, A. A transcription coupling model for how enhancers communicate with their target genes. Nat. Struct. Mol. Biol. 32, 598–606 (2025).

    Google Scholar 

  18. Johnson, C. H. & Schmidt, G. W. The psbB gene cluster of the Chlamydomonas reinhardtii chloroplast: sequence and transcriptional analyses of psbN and psbH. Plant Mol. Biol. 22, 645–658 (1993).

    Google Scholar 

  19. Stern, D. S., Higgs, D. C. & Yang, J. Transcription and translation in chloroplasts. Trends Plant Sci. 2, 308–315 (1997).

    Google Scholar 

  20. Klein, U., De Camp, J. D. & Bogorad, L. Two types of chloroplast gene promoters in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 89, 3453–3457 (1992).

    Google Scholar 

  21. Hatano-Iwasaki, A., Minagawa, J., Inoue, Y. & Takahashi, Y. Characterization of chloroplast psbA transformants of Chlamydomonas reinhardtii with impaired processing of a precursor of a photosystem II reaction center protein, D1. Plant Mol. Biol. 42, 353–363 (2000).

    Google Scholar 

  22. Rasala, B. A., Muto, M., Sullivan, J. & Mayfield, S. P. Improved heterologous protein expression in the chloroplast of Chlamydomonas reinhardtii through promoter and 5’ untranslated region optimization. Plant Biotechnol. J. 9, 674–683 (2011).

    Google Scholar 

  23. Drapier, D. et al. The chloroplast atpA gene cluster in Chlamydomonas reinhardtii. Functional analysis of a polycistronic transcription unit. Plant Physiol. 117, 629–641 (1998).

    Google Scholar 

  24. Shimmura, S. et al. Comparative analysis of chloroplast psbD promoters in terrestrial plants. Front Plant Sci. 8, 1186 (2017).

    Google Scholar 

  25. Nickelsen, J., Fleischmann, M., Boudreau, E., Rahire, M. & Rochaix, J.-D. Identification of cis-Acting RNA leader elements required for chloroplast psbD gene expression in chlamydomonas. Plant Cell 11, 957–970 (1999).

    Google Scholar 

  26. Klein, U., Salvador, M. L. & Bogorad, L. Activity of the Chlamydomonas chloroplast RBCL gene promoter is enhanced by a remote sequence element. Proc. Natl. Acad. Sci. 91, 10819–10823 (1994).

    Google Scholar 

  27. Scranton, M. A., Ostrand, J. T., Fields, F. J. & Mayfield, S. P. Chlamydomonas as a model for biofuels and bio-products production. Plant J. 82, 523–531 (2015).

    Google Scholar 

  28. Anthonisen, I. L., Salvador, M. L. & Klein, U. Specific sequence elements in the 5’ untranslated regions of rbcL and atpB gene mRNas stabilize transcripts in the chloroplast of Chlamydomonas reinhardtii. RNA 7, 1024–1033 (2001).

    Google Scholar 

  29. Cavaiuolo, M., Kuras, R., Wollman, F. A., Choquet, Y. Vallon, O. Small RNA profiling in Chlamydomonas: insights into chloroplast RNA metabolism. Nucleic Acids Res. 45, 10783–10799 (2017).

    Google Scholar 

  30. Loiselay, C. et al. Molecular identification and function of cis- and trans-acting determinants for petA transcript stability in Chlamydomonas reinhardtii chloroplasts. Mol. Cell Biol. 28, 5529–5542 (2008).

    Google Scholar 

  31. Johnson, X. et al. MRL1, a conserved Pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in chlamydomonas and arabidopsis. Plant Cell 22, 234–248 (2010).

    Google Scholar 

  32. Boudreau, E., Nickelsen, J., Lemaire, S. D., Ossenbühl, F. & Rochaix, J. D. The Nac2 gene of Chlamydomonas encodes a chloroplast TPR-like protein involved in psbD mRNA stability. Embo J. 19, 3366–3376 (2000).

    Google Scholar 

  33. Commault, A. S. et al. Methyl jasmonate treatment affects the regulation of the 2-C-methyl-D-erythritol 4-phosphate pathway and early steps of the triterpenoid biosynthesis in Chlamydomonas reinhardtii. Algal Res. 39, 101462 (2019).

    Google Scholar 

  34. Wang, R. et al. Isolation and functional characterization of bidirectional promoters in rice. Front Plant Sci. 7, 766 (2016).

    Google Scholar 

  35. In, S., Lee, H. A., Woo, J., Park, E. & Choi, D. Molecular characterization of a pathogen-inducible bidirectional promoter from hot pepper (Capsicum annuum). Mol. Plant Microbe Interact. 33, 1330–1339 (2020).

    Google Scholar 

  36. Liu, X. et al. The intergenic region of the maize defensin-like protein genes Def1 and Def2 functions as an embryo-specific asymmetric bidirectional promoter. J. Exp. Bot. 67, 4403–4413 (2016).

    Google Scholar 

  37. Thieffry, A. et al. Characterization of arabidopsis thaliana promoter bidirectionality and antisense RNAs by inactivation of nuclear RNA decay pathways. Plant Cell 32, 1845–1867 (2020).

    Google Scholar 

  38. Vogl, T. et al. Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nat. Commun. 9, 3589 (2018).

    Google Scholar 

  39. Yang, S., Sleight, S. C. & Sauro, H. M. Rationally designed bidirectional promoter improves the evolutionary stability of synthetic genetic circuits. Nucleic Acids Res. 41, e33 (2013).

    Google Scholar 

  40. Kumar, S. et al. A combinatorial bidirectional and bicistronic approach for coordinated multi-gene expression in corn. Plant Mol. Biol. 87, 341–353 (2015).

    Google Scholar 

  41. Poliner, E., Clark, E., Cummings, C., Benning, C. & Farre, E. M. A high-capacity gene stacking toolkit for the oleaginous microalga, Nannochloropsis oceanica CCMP1779. Algal Res. 45, 101664 (2020).

    Google Scholar 

  42. Büschlen, S., Choquet, Y., Kuras, R. & Wollman, F.-A. Nucleotide sequences of the continuous and separated petA, petB and petD chloroplast genes in Chlamydomonas reinhardtii. FEBS Lett. 284, 257–262 (1991).

    Google Scholar 

  43. Sakamoto, W., Chen, X., Kindle, K. L. & Stern, D. B. Function of the Chlamydomonas reinhardtii petd 5’ untranslated region in regulating the accumulation of subunit IV of the cytochrome b6/f complex. Plant J. 6, 503–512 (1994).

    Google Scholar 

  44. Loizeau, K. et al. Small RNAs reveal two target sites of the RNA-maturation factor Mbb1 in the chloroplast of Chlamydomonas. Nucleic Acids Res. 42, 3286–3297 (2013).

    Google Scholar 

  45. Fong, S. E. & Surzycki, S. J. Organization and structure of plastome psbF, psbL, petG and ORF712 genes in Chlamydomonas reinhardtii. Curr. Genet. 21, 527–530 (1992).

    Google Scholar 

  46. Fong, S. E. & Surzycki, S. J. Chloroplast RNA polymerase genes of Chlamydomonas reinhardtii exhibit an unusual structure and arrangement. Curr. Genet 21, 485–497 (1992).

    Google Scholar 

  47. Solovyev, V. V. & Salamov, A. A. Recognition of 3′-processing sites of human mRNA precursors. Comput. Appl. Biosci. 13, 23–28 (1997).

  48. Ma, K., Deng, L., Wu, H. & Fan, J. Towards green biomanufacturing of high-value recombinant proteins using promising cell factory: chlamydomonas reinhardtii chloroplast. Bioresour. Bioprocess 9, 83 (2022).

    Google Scholar 

  49. Miro-Vinyals, B. et al. Chloroplast engineering of the green microalgae Chlamydomonas reinhardtii for the production of HAA, the lipid moiety of rhamnolipid biosurfactants. N. Biotechnol. 76, 1–12 (2023).

    Google Scholar 

  50. Di Rocco, G. et al. A PETase enzyme synthesised in the chloroplast of the microalga Chlamydomonas reinhardtii is active against post-consumer plastics. Sci. Rep. 13, 10028 (2023).

    Google Scholar 

  51. Barnes, D. et al. Contribution of 5’- and 3’-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol. Genet Genomics 274, 625–636 (2005).

    Google Scholar 

  52. Economou, C., Wannathong, T., Szaub, J. & Purton, S. A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii. Methods Mol. Biol. 1132, 401–411 (2014).

    Google Scholar 

  53. Nishimura, Y. & Stern, D. B. Differential replication of two chloroplast genome forms in heteroplasmic Chlamydomonas reinhardtii gametes contributes to alternative inheritance patterns. Genetics 185, 1167–1181 (2010).

    Google Scholar 

  54. Khan, A. et al. Plant synthetic promoters: advancement and prospective. Agriculture 13, 298 (2023).

    Google Scholar 

  55. Anwar, M., Wang, J., Li, J., Altaf, M. M. & Hu, Z. MYB transcriptional factors affects upstream and downstream MEP pathway and triterpenoid biosynthesis in chlamydomonas reinhardtii. Processes 12, 487 (2024).

    Google Scholar 

  56. Wasternack, C. & Hause, B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111, 1021–1058 (2013).

    Google Scholar 

  57. Goossens, J., Fernandez-Calvo, P., Schweizer, F. & Goossens, A. Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Mol. Biol. 91, 673–689 (2016).

    Google Scholar 

  58. Al Hoqani, U. H. A. Metabolic engineering of the algal chloroplast for terpenoid production. Doctoral thesis, UCL (University College London) (2017).

  59. Wichmann, J. et al. Farnesyl pyrophosphate compartmentalization in the green microalga Chlamydomonas reinhardtii during heterologous (E)-alpha-bisabolene production. Micro. Cell Fact. 21, 190 (2022).

    Google Scholar 

  60. Pérez-Martín, J. & de Lorenzo, V. Clues and consequences of DNA bending in transcription. Annu. Rev. Microbiol. 51, 593–628 (1997).

    Google Scholar 

  61. Summer, E. J., Schmid, V. H., Bruns, B. U. & Schmidt, G. W. Requirement for the H phosphoprotein in photosystem II of Chlamydomonas reinhardtii. Plant Physiol. 113, 1359–1368 (1997).

    Google Scholar 

  62. Torabi, S. et al. PsbN is required for assembly of the photosystem II reaction center in Nicotiana tabacum. Plant Cell 26, 1183–1199 (2014).

    Google Scholar 

  63. Rosales-Mendoza, S., Paz-Maldonado, L. M. T. & Soria-Guerra, R. E. Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. Plant Cell Rep. 31, 479–494 (2012).

    Google Scholar 

  64. Surzycki, R. et al. Factors effecting expression of vaccines in microalgae. Biologicals 37, 133–138 (2009).

    Google Scholar 

  65. Barnes, D. et al. Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol. Genet. Genomics 274, 625–636 (2005).

    Google Scholar 

  66. Wannathong, T., Waterhouse, J. C., Young, R. E., Economou, C. K. & Purton, S. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol. 100, 5467–5477 (2016).

    Google Scholar 

  67. Odom, O. W., Kang, S., Ferguson, C., Chen, C. & Herrin, D. L. Overcoming poor transgene expression in the wild-type chlamydomonas chloroplast: creation of highly mosquitocidal strains of chlamydomonas reinhardtii. Microorganisms 10, 1087 (2022).

    Google Scholar 

  68. Coragliotti, A. T., Beligni, M. V., Franklin, S. E. & Mayfield, S. P. Molecular factors affecting the accumulation of recombinant proteins in the Chlamydomonas reinhardtii chloroplast. Mol. Biotechnol. 48, 60–75 (2011).

    Google Scholar 

  69. Barkan, A. Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol. 155, 1520–1532 (2011).

    Google Scholar 

  70. Kasai, S. et al. Effect of coding regions on chloroplast gene expression in Chlamydomonas reinhardtii. J. Biosci. Bioeng. 95, 276–282 (2003).

    Google Scholar 

  71. Kato, K., Ishikura, K., Kasai, S. & Shinmyo, A. Efficient translation destabilizes transcripts in chloroplasts of Chlamydomonas reinhardtii. J. Biosci. Bioeng. 101, 471–477 (2006).

    Google Scholar 

  72. Viola, S. et al. MDA1, a nucleus-encoded factor involved in the stabilization and processing of the atpA transcript in the chloroplast of Chlamydomonas. Plant J. 98, 1033–1047 (2019).

    Google Scholar 

  73. Eberhard, S. et al. Dual functions of the nucleus-encoded factor TDA1 in trapping and translation activation of atpA transcripts in Chlamydomonas reinhardtii chloroplasts. Plant J. 67, 1055–1066 (2011).

    Google Scholar 

  74. Chaux, F. et al. Chloroplast ATP synthase biogenesis requires peripheral stalk subunits AtpF and ATPG and stabilization of atpE mRNA by OPR protein MDE1. Plant J. 116, 1582–1599 (2023).

    Google Scholar 

  75. Anthonisen, I. L., Salvador, M. L. & Klein, U. W. E. Specific sequence elements in the 5′ untranslated regions of rbcL and atpB gene mRNAs stabilize transcripts in the chloroplast of Chlamydomonas reinhardtii. RNA 7, 1024–1033 (2001).

    Google Scholar 

  76. Hauser, C. R., Gillham, N. W. & Boynton, J. E. Translational regulation of chloroplast genes: proteins binding to the 5′-untranslated regions of chloroplast mrnas in chlamydomonas reinhardtii(). J. Biol. Chem. 271, 1486–1497 (1996).

    Google Scholar 

  77. Odom, O. W., Kang, S., Ferguson, C., Chen, C. & Herrin, D. L. Overcoming poor transgene expression in the wild-type chlamydomonas chloroplast: creation of highly mosquitocidal strains of chlamydomonas reinhardtii. Microorganisms 10 (2022). https://doi.org/10.3390/microorganisms10061087

  78. Miró-Vinyals, B. et al. Chloroplast engineering of the green microalgae Chlamydomonas reinhardtii for the production of HAA, the lipid moiety of rhamnolipid biosurfactants. N. Biotechnol. 76, 1–12 (2023).

    Google Scholar 

  79. Mordaka, P. M. et al. Regulation of nucleus-encoded trans-acting factors allows orthogonal fine-tuning of multiple transgenes in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol. J. 23, 1005–1018 (2025).

    Google Scholar 

  80. Kurowska, M. M. et al. Methyl Jasmonate Affects Photosynthesis Efficiency, Expression of HvTIP Genes and Nitrogen Homeostasis in Barley. Int J Mol Sci 21 (2020). https://doi.org/10.3390/ijms21124335

  81. Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M. & Turner, J. G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094 (1998).

    Google Scholar 

  82. Devoto, A. et al. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J. 32, 457–466 (2002).

    Google Scholar 

  83. Chini, A., Boter, M. & Solano, R. Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. FEBS J. 276, 4682–4692 (2009).

    Google Scholar 

  84. Staswick, P. E. JAZing up jasmonate signaling. Trends Plant Sci. 13, 66–71 (2008).

    Google Scholar 

  85. Fonseca, S., Chico, J. M. & Solano, R. The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr. Opin. Plant Biol. 12, 539–547 (2009).

    Google Scholar 

  86. Lohr, M., Schwender, J. & Polle, J. E. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci. 185-186, 9–22 (2012).

    Google Scholar 

  87. Higo, K., Ugawa, Y., Iwamoto, M. & Higo, H. PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res. 26, 358–359 (1998).

    Google Scholar 

  88. Jansen, R. K. et al. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol. 395, 348–384 (2005).

    Google Scholar 

  89. Barrera, D., Gimpel, J. & Mayfield, S. in Chloroplast Biotechnology: Methods and Protocols (ed Pal Maliga) 391-399 (Humana Press, 2014).

  90. Nouemssi, S. B. et al. Rapid and efficient colony-pcr for high throughput screening of genetically transformed chlamydomonas reinhardtii. Life 10, 186 (2020).

    Google Scholar 

  91. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Google Scholar 

Download references