References
-
Arbuthnot, M. K. & Garcia, A. V. Early resuscitation and management of severe pediatric burns. In Seminars in Pediatric Surgery. (Elsevier, 2019).
-
Hashemi, S.-S. et al. Study the effect of calendula officinalis extract loaded on zinc oxide nanoparticle cream in burn wound healing. ACS Appl. Mater. Interfaces. 15(51), 59269–59279 (2023).
-
Jozsa, G. et al. Treatment of partial thickness hand burn injuries in children with combination of silver foam dressing and zinc-hyaluronic gel. Medicine 97(13), e9991 (2018).
-
Markiewicz-Gospodarek, A. et al. Burn wound healing: clinical complications, medical care, treatment, and dressing types: the current state of knowledge for clinical practice. Int. J. Environ. Res. Public Health 19(3), 1338 (2022).
-
Ahmadi, F. et al. Nanohybrid based on (Mn, Zn) ferrite nanoparticles functionalized with chitosan and sodium alginate for loading of curcumin against human breast cancer cells. AAPS PharmSciTech 24(8), 222 (2023).
-
Penatzer, J. A., Srinivas, S. & Thakkar, R. K. The role of macrophages in thermal injury. Int. J. Burns Trauma 12(1), 1 (2022).
-
El Baassiri, M. G. et al. Nerve growth factor and burn wound healing: Update of molecular interactions with skin cells. Burns 49(5), 989–1002 (2023).
-
Ferreira, D. W. et al. CD163 overexpression using a macrophage-directed gene therapy approach improves wound healing in ex vivo and in vivo human skin models. Immunobiology 225(1), 151862 (2020).
-
Sharda, D., Kaur, P. & Choudhury, D. Protein-modified nanomaterials: emerging trends in skin wound healing. Discover Nano 18(1), 127 (2023).
-
Hiebert, P. & Werner, S. Regulation of wound healing by the NRF2 transcription factor—More than cytoprotection. Int. J. Mol. Sci. 20(16), 3856 (2019).
-
Barrientos, S. et al. Growth factors and cytokines in wound healing. Wound Repair Regener. 16(5), 585–601 (2008).
-
Xiao, Y. et al. Ultrasmall CuS@ BSA nanoparticles with mild photothermal conversion synergistically induce MSCs-differentiated fibroblast and improve skin regeneration. Theranostics 10(4), 1500 (2020).
-
Li, H. et al. miR-23b promotes cutaneous wound healing through inhibition of the inflammatory responses by targeting ASK1. Acta Biochim. Biophys. Sin. 50(11), 1104–1113 (2018).
-
Landén, N. X., Li, D. & Ståhle, M. Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci. 73(20), 3861–3885 (2016).
-
Kathe, K. & Kathpalia, H. Film forming systems for topical and transdermal drug delivery. Asian J. Pharm. Sci. 12(6), 487–497 (2017).
-
Huang, R. et al. Recent advances in nanotherapeutics for the treatment of burn wounds. Burns Trauma 9, tkab026 (2021).
-
Zhao, D. et al. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33(28), 2000619 (2021).
-
de Aragão Tavares, E. et al. Chitosan membrane modified with a new zinc (II)-vanillin complex improves skin wound healing in diabetic rats. Front. Pharmacol. 9, 1511 (2019).
-
Lin, P.-H. et al. Zinc in wound healing modulation. Nutrients 10(1), 16 (2017).
-
Rembe, J.-D. et al. Comprehensive analysis of zinc derivatives pro-proliferative, anti-apoptotic and antimicrobial effect on human fibroblasts and keratinocytes in a simulated, nutrient-deficient environment in vitro. Int. J. Mol. Cell. Med. 9(2), 165 (2020).
-
Baseer, R. A. et al. A biodegradable film based on cellulose and thiazolidine bearing UV shielding property. Sci. Rep. 12(1), 7887 (2022).
-
Tubek, S., Grzanka, P. & Tubek, I. Role of zinc in hemostasis: a review. Biol. Trace Elem. Res. 121(1), 1–8 (2008).
-
Lansdown, A. B. et al. Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regener. 15(1), 2–16 (2007).
-
Lim, Y., Levy, M. & Bray, T. M. Dietary zinc alters early inflammatory responses during cutaneous wound healing in weanling CD-1 mice. J. Nutr. 134(4), 811–816 (2004).
-
Li, J. et al. Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. Nat. Commun. 10(1), 4490 (2019).
-
Strobel, A. M. & Fey, R. Emergency care of pediatric burns. Emerg. Med. Clin. 36(2), 441–458 (2018).
-
Liu, Z. et al. A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioactive Mater. 20, 610–626 (2023).
-
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25 (4), 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).
-
Suvarna, K. S., Layton, C. & Bancroft, J. D. Bancroft’s Theory and Practice of Histological Techniques E-Book. (Elsevier health sciences, 2018).
-
Abdulkhani, A. et al. Preparation of cellulose/polyvinyl alcohol biocomposite films using 1-n-butyl-3-methylimidazolium chloride. Int. J. Biol. Macromol. 62, 379–386 (2013).
-
Kamel, S. et al. Wound dressings based on sodium alginate–polyvinyl alcohol–Moringa oleifera extracts. Pharmaceutics 15(4), 1270 (2023).
-
Dacrory, S. Development of mesoporous foam based on dicarboxylic cellulose and graphene oxide for potential oil/water separation. Polym. Bull. 79(11), 9563–9574 (2022).
-
Kampeerapappun, P. et al. Preparation of cassava starch/montmorillonite composite film. Carbohyd. Polym. 67(2), 155–163 (2007).
-
Díez-Pascual, A. M. & Díez-Vicente, A. L. Wound healing bionanocomposites based on castor oil polymeric films reinforced with chitosan-modified ZnO nanoparticles. Biomacromol 16(9), 2631–2644 (2015).
-
Lansdown, A. B. Metallothioneins: potential therapeutic aids for wound healing in the skin. Wound Repair Regener. 10(3), 130–132 (2002).
-
Devaux, S. et al. Adherence to topical treatment in psoriasis: a systematic literature review. J. Eur. Acad. Dermatol. Venereol. 26, 61–67 (2012).
-
Tan, X. et al. Topical drug delivery systems in dermatology: a review of patient adherence issues. Expert Opin. Drug Deliv. 9(10), 1263–1271 (2012).
-
Omidi, M. et al. Anti-melanogenesis potential effect of green alginate nanoparticle of kojic acid as skin whitening product: in-vitro and in-vivo evaluation. Nanomedicine J. 12(4) (2025).
-
Werner, S. & Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 83(3), 835–870 (2003).
-
Tammam, B. M. et al. Therapeutic role of mesenchymal stem cells and platelet-rich plasma on skin burn healing and rejuvenation: A focus on scar regulation, oxido-inflammatory stress and apoptotic mechanisms. Heliyon. 9(9) (2023).
-
Irfan, F. et al. Role of quercetin and rutin in enhancing the therapeutic potential of mesenchymal stem cells for cold induced burn wound. Regener. Ther. 21, 225–238 (2022).
-
Gauglitz, G. G. et al. Characterization of the inflammatory response during acute and post-acute phases after severe burn. Shock 30(5), 503–507 (2008).
-
Nyhlén, K. et al. Modulation of cytokine-induced production of IL-8 in vitro by interferons and glucocorticosteroids. Inflammation 28(2), 77–88 (2004).
-
Gaweł, M. et al. Antioxidant and anti-inflammatory effects of zinc: zinc-dependent $ NF-kappa B $ signaling. (2017).
-
Gammoh, N. Z. & Rink, L. Zinc in infection and inflammation. Nutrients 9(6), 624 (2017).
-
Tsipouras, N., Rix, C. J. & Brady, P. H. Solubility of silver sulfadiazine in physiological media and relevance to treatment of thermal burns with silver sulfadiazine cream. Clin. Chem. 41(1), 87–91 (1995).
-
Mansoub, N. H. et al. The role of PRP and adipose tissue-derived keratinocytes on burn wound healing in diabetic rats. Bioimpacts 8(1), 5 (2017).
-
Mathew-Steiner, S. S., Roy, S. & Sen, C. K. Collagen in wound healing. Bioengineering 8(5), 63 (2021).
-
Klar, A. S. et al. Characterization of M1 and M2 polarization of macrophages in vascularized human dermo-epidermal skin substitutes in vivo. Pediatr. Surg. Int. 34(2), 129–135 (2018).
-
Daley, J. M. et al. The phenotype of murine wound macrophages. J. Leukoc. Biol. 87(1), 59–67 (2010).
-
Gomes, A., Leite, F. & Ribeiro, L. Adipocytes and macrophages secretomes coregulate catecholamine-synthesizing enzymes. Int. J. Med. Sci. 18(3), 582 (2021).
-
Li, R. et al. Macrophages and fibroblasts in foreign body reactions: How mechanical cues drive cell functions?. Mater. Today Bio 22, 100783 (2023).
-
Tümer, A. R. et al. Effects of 5-fluorouracil and zinc on healing of colonic anastomoses in rabbits. Eur. J. Surg. 165(4), 369–377 (1999).
-
Gomis-Rüth, F. X. Structural aspects of the metzincin clan of metalloendopeptidases. Mol. Biotechnol. 24(2), 157–202 (2003).
-
Prockop, D. J., Sieron, A. L. & Li, S.-W. Procollagen N-proteinase and procollagen C-proteinase. Two unusual metalloproteinases that are essential for procollagen processing probably have important roles in development and cell signaling. Matrix Biol. 16(7), 399–408 (1998).
-
Reid, R. R. et al. Inhibition of procollagen C-proteinase reduces scar hypertrophy in a rabbit model of cutaneous scarring. Wound Repair Regener. 14(2), 138–141 (2006).
-
Suroto, H. et al. Early and late apoptosis protein expression (Bcl-2, BAX and p53) in traumatic brachial plexus injury. J. Musculoskelet. Neuronal Interact. 21(4), 528 (2021).
-
Jeong, C.-H. & Joo, S. H. Downregulation of reactive oxygen species in apoptosis. J. Cancer Prev. 21(1), 13 (2016).
-
La Colla, A. et al. 17β-Estradiol protects skeletal myoblasts from apoptosis through p53, Bcl-2, and FoxO families. J. Cell. Biochem. 118(1), 104–115 (2017).
-
Shi, T. et al. DNA damage and oxidant stress activate p53 through differential upstream signaling pathways. Free Radic. Biol. Med. 172, 298–311 (2021).
-
Lin, S. et al. Zinc promotes autophagy and inhibits apoptosis through AMPK/mTOR signaling pathway after spinal cord injury. Neurosci. Lett. 736, 135263 (2020).
-
Adil, M. et al. Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α. Ren. Fail. 37(8), 1396–1407 (2015).
-
Honnegowda, T. M. et al. Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plastic Aesthetic Res. 2, 243–249 (2015).
-
Zhou, Z. et al. Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways. EXCLI J. 18, 723 (2019).
-
Adil, M. et al. Sodium arsenite-induced myocardial bruise in rats: Ameliorative effect of naringin via TGF-β/Smad and Nrf/HO pathways. Chem. Biol. Interact. 253, 66–77 (2016).
-
Yan, Z., Li, S. & Gong, Z. Bisacurone gel ameliorated burn wounds in experimental rats via its anti-inflammatory, antioxidant, and angiogenic properties. Acta Cir. Bras. 38, e382423 (2023).
-
Hussein, S. A. et al. Wound healing acceleration using topical chitosan/zinc oxide nanocomposite membrane and local insulin injection in diabetic rats via modulation of genes expression targeting angiogenesis. (2022).
-
Guo, H.-F. et al. Epidermal growth factor and tocotrienol-rich fraction cream formulation accelerates burn healing process based on its gene expression pattern in deep partial-thickness burn wound model. Int. J. Low. Extrem. Wounds 21(4), 544–554 (2022).
-
Yu, T. S. et al. Time-dependent expression of MMP-2 and TIMP-2 after rats skeletal muscle contusion and their application to determine wound age. J. Forensic Sci. 61(2), 527–533 (2016).
-
Zhao, R. et al. Activated protein C in cutaneous wound healing: from bench to bedside. Int. J. Mol. Sci. 20(4), 903 (2019).
-
Julovi, S. M. et al. Involvement of PAR-2 in the induction of cell-specific matrix metalloproteinase-2 by activated protein C in cutaneous wound healing. Int. J. Mol. Sci. 25(1), 370 (2023).
-
Pilar, E. F. S. et al. Modulation of gene expression in skin wound healing by photobiomodulation therapy: A systematic review in vivo studies. Photodermatol. Photoimmunol. Photomed. 40(4), e12990 (2024).
-
Krishnaswamy, V. R., Mintz, D. & Sagi, I. Matrix metalloproteinases: the sculptors of chronic cutaneous wounds. Biochim. Biophys. Acta Mol. Cell Res. 1864(11), 2220–2227 (2017).
-
Zhou, P. et al. The imbalance of MMP-2/TIMP-2 and MMP-9/TIMP-1 contributes to collagen deposition disorder in diabetic non-injured skin. Front. Endocrinol. 12, 734485 (2021).
-
Kalirajan, C. & Palanisamy, T. A ZnO–curcumin nanocomposite embedded hybrid collagen scaffold for effective scarless skin regeneration in acute burn injury. J. Mater. Chem. B 7(38), 5873–5886 (2019).
-
Qi, Z. et al. Zinc contributes to acute cerebral ischemia-induced blood–brain barrier disruption. Neurobiol. Dis. 95, 12–21 (2016).
-
Kader, A. H. A., Dacrory, S., Khattab, T. A., Kamel, S. & Abou-Yousef, H. Hydrophobic and Flame-Retardant Foam Based on Cellulose. J. Polym. Environ. 30 (6), 2366–2377 (2022).
