Plant-derived extracellular vesicles for itraconazole delivery across the blood-brain barrier for potential glioblastoma treatment

plant-derived-extracellular-vesicles-for-itraconazole-delivery-across-the-blood-brain-barrier-for-potential-glioblastoma-treatment
Plant-derived extracellular vesicles for itraconazole delivery across the blood-brain barrier for potential glioblastoma treatment

References

  1. Ary Dotiwala, A. K., McCausland, C., Samra Affiliations, N. S. & Anatomy Head and Neck: Blood Brain Barrier.

  2. Zhao, Y. et al. Factors influencing the blood-brain barrier permeability. Brain Res.  https://doi.org/10.1016/j.brainres.2022.147937 (2022).

    Google Scholar 

  3. Mathew, E. N., Berry, B. C., Yang, H. W., Carroll, R. S. & Johnson, M. D. Delivering therapeutics to glioblastoma: overcoming biological constraints. Int. J. Mol. Sci. MDPI. https://doi.org/10.3390/ijms23031711 (2022).

    Google Scholar 

  4. Cha, G. D., Jung, S., Choi, S. H. & Kim, D. H. Local Drug Delivery Strategies for Glioblastoma Treatment. Brain Tumor Res. Treat. https://doi.org/10.14791/btrt.2022.0017 (2022).

    Google Scholar 

  5. Chen, C. et al. Active cargo loading into extracellular vesicles: Highlights the heterogeneous encapsulation behaviour. J. Extracell. Vesicles John Wiley Sons Inc https://doi.org/10.1002/jev2.12163 (2021).

    Google Scholar 

  6. Wang, L. et al. MicroRNAs of extracellular vesicles derived from mesenchymal stromal cells alleviate inflammation in dry eye disease by targeting the IRAK1/Table 2/NF-κB pathway. Ocular Surf. Elsevier Inc. 28, 131–140. https://doi.org/10.1016/j.jtos.2023.03.002 (2023).

    Google Scholar 

  7. Tajik, T., Baghaei, K., Moghadam, V. E., Farrokhi, N. & Salami, S. A. Extracellular vesicles of cannabis with high CBD content induce anticancer signaling in human hepatocellular carcinoma. Biomed. Pharmacotherapy Elsevier Masson s r l https://doi.org/10.1016/j.biopha.2022.113209 (2022).

    Google Scholar 

  8. Zhu, J., Wang, S., Yang, D., Xu, W. & Qian, H. Extracellular vesicles: emerging roles, biomarkers and therapeutic strategies in fibrotic diseases. J. Nanobiotechnol. BioMed. Cent. Ltd. https://doi.org/10.1186/s12951-023-01921-3 (2023).

    Google Scholar 

  9. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol Nat. Res. https://doi.org/10.1038/s41565-021-00931-2 (2021).

    Google Scholar 

  10. Li, C. et al. Overcoming the blood-brain barrier: exosomes as theranostic nanocarriers for precision neuroimaging. J. Controlled Release  https://doi.org/10.1016/j.jconrel.2022.08.002 (2022).

    Google Scholar 

  11. Cui, L., Perini, G., Palmieri, V., De Spirito, M. & Papi, M. Plant-derived extracellular vesicles as a novel frontier in cancer therapeutics. nanomaterials (Multidisciplinary Digital Publishing Institute (MDPI), 2024). https://doi.org/10.3390/nano14161331.

    Google Scholar 

  12. Alzahrani, F. A., Khan, M. I., Kameli, N., Alsahafi, E. & Riza, Y. M. Plant-derived extracellular vesicles and their exciting potential as the future of next-generation drug delivery (Biomolecules. MDPI, 2023). https://doi.org/10.3390/biom13050839.

    Google Scholar 

  13. Bhom, N., Somandi, K., Ramburrun, P. & Choonara, Y. E. Extracellular nanovesicles as neurotherapeutics for central nervous system disorders. Expert Opin Drug Deliv (Taylor and Francis Ltd., 2024). https://doi.org/10.1080/17425247.2024.2440099.

    Google Scholar 

  14. Ferizi, R., Ramadan, M. F. & Maxhuni, Q. Black seeds (Nigella sativa) medical application and pharmaceutical perspectives. J. Pharm. Bioallied Sci.  https://doi.org/10.4103/jpbs.jpbs_364_22 (2023).

    Google Scholar 

  15. Loggenberg, S. R., Twilley, D., De Canha, M. N., Meyer, D. & Lall, N. The activity of Aloe arborescens miller varieties on wound-associated pathogens, wound healing and growth factor production. South. Afr. J. Bot. Elsevier B V. 147, 1096–1104. https://doi.org/10.1016/j.sajb.2022.04.010 (2022).

    Google Scholar 

  16. Shahrajabian, M. H., Sun, W. & Cheng, Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric Scand B Soil Plant Sci 546–556 (Taylor and Francis Ltd., 2019). https://doi.org/10.1080/09064710.2019.1606930.

    Google Scholar 

  17. Kurizaki, A., Watanabe, T. & Devkota, H. P. Chemical constituents from the flowers of Aloe arborescens. Nat. Prod. Commun. Nat. Prod. Incorporation https://doi.org/10.1177/1934578X19844135 (2019).

    Google Scholar 

  18. Khader, M. & Eckl, P. M. Thymoquinone: an emerging natural drug with a wide range of medical applications.

  19. Mao, Q. Q. et al. Bioactive compounds and bioactivities of ginger (zingiber officinale roscoe). Foods (MDPI, 2019). https://doi.org/10.3390/foods8060185.

    Google Scholar 

  20. Du, S. et al. Extracellular vesicles: a rising star for therapeutics and drug delivery. J. Nanobiotechnol. BioMed. Cent. Ltd. https://doi.org/10.1186/s12951-023-01973-5 (2023).

    Google Scholar 

  21. Alomari, S. et al. Drug repurposing for glioblastoma and current advances in drug delivery—A comprehensive review of the literature. Biomolecules MDPI. https://doi.org/10.3390/biom11121870 (2021).

    Google Scholar 

  22. Anwer, M. S., Abdel-Rasol, M. A. & El-Sayed, W. M. Emerging therapeutic strategies in glioblastsoma: drug repurposing, mechanisms of resistance, precision medicine, and technological innovations. Clin. Exp. Med. Springer Sci. Bus. Media Deutschland GmbH. https://doi.org/10.1007/s10238-025-01631-0 (2025).

    Google Scholar 

  23. In silico drug repurposing: an antifungal drug, itraconazole, repurposed as an anticancer agent using molecular docking.

  24. Wirth, F. & Ishida, K. Antifungal drugs: an updated review of central nervous system pharmacokinetics. Mycoses Blackwell Publishing Ltd. 63, 1047–1059. https://doi.org/10.1111/myc.13157 (2020).

    Google Scholar 

  25. Lee, H., Park, H., Noh, G. J. & Lee, E. S. pH-responsive hyaluronate-anchored extracellular vesicles to promote tumor-targeted drug delivery. Carbohydr. Polym. Elsevier Ltd. 202, 323–333. https://doi.org/10.1016/j.carbpol.2018.08.141 (2018).

    Google Scholar 

  26. Li, Y. J. et al. Gemcitabine loaded autologous exosomes for effective and safe chemotherapy of pancreatic cancer. Acta Biomater. Acta Mater. Inc. 101, 519–530. https://doi.org/10.1016/j.actbio.2019.10.022 (2020).

    Google Scholar 

  27. Xi, X. M., Chen-Meng, Xia, S. J. & Lu, R. Drug loading techniques for exosome-based drug delivery systems. Pharmazie 61–67 (Govi-Verlag Pharmazeutischer Verlag GmbH, 2021). https://doi.org/10.1691/ph.2021.0128.

    Google Scholar 

  28. Malvern Panalytical. Zetasizer Nano ZS User Software (Malvern Panalytical Ltd., Worcestershire, UK). Available at: https://www.malvernpanalytical.com

  29. Carl Zeiss Microscopy GmbH.ZEISS SmartSEM Imaging Software. (Carl Zeiss Microscopy GmbH, Cambridge, UK). Available at: https://www.zeiss.com/microscopy

  30. Moqejwa, T., Marimuthu, T., Kondiah, P. P. D. & Choonara, Y. E. Development of stable nano-sized transfersomes as a rectal colloid for enhanced delivery of cannabidiol. Pharm.  https://doi.org/10.3390/pharmaceutics14040703 (2022).

    Google Scholar 

  31. Khalbas, A. H., Albayati, T. M., Ali, N. S. & Salih, I. K. Drug loading methods and kinetic release models using of mesoporous silica nanoparticles as a drug delivery system: a review.  Afr. J. Chem. Eng.  https://doi.org/10.1016/j.sajce.2024.08.013 (2024).

    Google Scholar 

  32. Waters Corporation. Empower Chromatography Data Software (Waters Corporation, Milford, MA, USA). Available at: https://www.waters.com

  33. Rao, Nutan. Stability-indicating method development and validation of itraconazole and terbinafine. J. Pharm. Clinical. Innovare Acad. Sci. Pvt Ltd. https://doi.org/10.22159/ajpcr.2019.v12i9.33922 (2019).

    Google Scholar 

  34. PerkinElmer Inc. SpectrumTM Software for FT-IR Systems (PerkinElmer Inc., Beaconsfield, UK). Available at: https://www.perkinelmer.com

  35. Kim, Y., Park, E. J., Kim, T. W. & Na, D. H. Recent progress in drug release testing methods of biopolymeric particulate system (Pharmaceutics. MDPI, 2021). https://doi.org/10.3390/pharmaceutics13081313.

    Google Scholar 

  36. Bohrey, S., Chourasiya, V. & Pandey, A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg Korea Nano Technol. Res. Soc. https://doi.org/10.1186/s40580-016-0061-2 (2016).

    Google Scholar 

  37. Son, G. H., Lee, B. J. & Cho, C. W. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J. Pharm. Investig Springer Neth. https://doi.org/10.1007/s40005-017-0320-1 (2017).

    Google Scholar 

  38. Hosseini, A. et al. Exosome-inspired targeting of cancer cells with enhanced affinity. J. Mater. Chem. B Royal Soc. Chem. 4, 768–778. https://doi.org/10.1039/c5tb01741f (2016).

    Google Scholar 

  39. Ngema, L. M. et al. Surface immobilization of Anti-VEGF peptide on spions for antiangiogenic and targeted delivery of Paclitaxel in Non-Small-Cell lung carcinoma. ACS Appl. Bio Mater. Am. Chem. Soc. 6, 2747–2759. https://doi.org/10.1021/acsabm.3c00224 (2023).

    Google Scholar 

  40. Logos Biosystems. CELENA® S Digital Imaging System Software (Logos Biosystems, Gyeonggi-do, South Korea). Available at: https://www.logosbio.com

  41. Danaei, M. et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics (MDPI AG, 2018). https://doi.org/10.3390/pharmaceutics10020057.

    Google Scholar 

  42. Hersh, A. M., Alomari, S. & Tyler, B. M. Crossing the blood-brain barrier: advances in nanoparticle technology for drug delivery in neuro-oncology. Int. J. Mol. Sci.  https://doi.org/10.3390/ijms23084153 (2022).

    Google Scholar 

  43. Öztürk, K., Kaplan, M. & Çalış, S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int. J. Pharm. Elsevier B V. https://doi.org/10.1016/j.ijpharm.2024.124799 (2024).

    Google Scholar 

  44. Zha, S. et al. Functionalized Nanomaterials Capable of Crossing the Blood-Brain Barrier 1820–1845 (ACS Nano. American Chemical Society, 2024). https://doi.org/10.1021/acsnano.3c10674.

    Google Scholar 

  45. Golan, M. E. & Stice, S. L. Extracellular vesicle lyophilization for enhanced distribution to the point of care. Extracell. Vesicle Elsevier BV. 3, 100041. https://doi.org/10.1016/j.vesic.2024.100041 (2024).

    Google Scholar 

  46. Albakry, Z. et al. Nutritional composition and volatile compounds of Black Cumin (Nigella sativa L.) seed, fatty acid composition and tocopherols, polyphenols, and antioxidant activity of its essential oil. Horticulturae  https://doi.org/10.3390/horticulturae8070575 (2022).

    Google Scholar 

  47. Puia, A. et al. The phytochemical constituents and therapeutic uses of genus aloe: A review. Not Bot. Horti Agrobot Cluj Napoca Acad. Press. 49, 1–16. https://doi.org/10.15835/nbha49212332 (2021).

    Google Scholar 

  48. Majid, A. The chemical constituents and Pharmacological effects of Nigella sativa. Journal of bioscience and applied research. Egypts Presidential Specialized Council Educ. Sci. Res. 4, 389–400. https://doi.org/10.21608/jbaar.2018.151793 (2018).

    Google Scholar 

  49. Huang, Q., Chen, X., Yu, S., Gong, G. & Shu, H. Research progress in brain-targeted nasal drug delivery. Front. Aging Neurosci. Front. Media SA. https://doi.org/10.3389/fnagi.2023.1341295 (2023).

    Google Scholar 

  50. Wang, P. et al. Exosomes from M1-polarized macrophages enhance Paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics Ivyspring Int. Publisher. 9, 1714–1727. https://doi.org/10.7150/thno.30716 (2019).

    Google Scholar 

  51. Ghadami, S. & Dellinger, K. The lipid composition of extracellular vesicles: applications in diagnostics and therapeutic delivery. Front. Mol. Biosci. Front. Media SA. https://doi.org/10.3389/fmolb.2023.1198044 (2023).

    Google Scholar 

  52. Li, P., Dai, X., Qu, L., Sui, Y. & Zhang, C. Dual responsive oligo(lysine)-modified pluronic F127 hydrogels for drug release of 5-fluorouracil. RSC Adv. Royal Soc. Chem. 10, 24507–24514. https://doi.org/10.1039/d0ra03207g (2020).

    Google Scholar 

  53. Hudiyanti, D., Al Khafiz, M. F., Anam, K., Siahaan, P. & Suyati, L. Assessing encapsulation of Curcumin in cocoliposome: in vitro study. Open. Chem. De Gruyter Open. Ltd. 19, 358–366. https://doi.org/10.1515/chem-2021-0036 (2021).

    Google Scholar 

  54. Jovanović, A. A. et al. Design and characterization of liposomal-based carriers for the encapsulation of rosa canina fruit extract. In Vitro Gastrointestinal Release Behavior. Plants 13 (Multidisciplinary Digital Publishing Institute (MDPI), 2024). https://doi.org/10.3390/plants13182608.

    Google Scholar 

  55. Ghezzi, M. et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Controlled Release  https://doi.org/10.1016/j.jconrel.2021.02.031 (2021).

    Google Scholar 

  56. Lin, X., Yang, H., Su, L., Yang, Z. & Tang, X. Effect of size on the in vitro/in vivo drug release and degradation of exenatide-loaded PLGA microspheres. J. Drug Deliv Sci. Technol. Editions De Sante. 45, 346–356. https://doi.org/10.1016/j.jddst.2018.03.024 (2018).

    Google Scholar 

  57. Adepu, S. & Ramakrishna, S. Controlled drug delivery systems: current status and future directions. Molecules MDPI. https://doi.org/10.3390/molecules26195905 (2021).

    Google Scholar 

  58. Vaz-Salgado, M. A. et al. Recurrent Glioblastoma: A Review of the Treatment Options. Cancers (Basel) (Multidisciplinary Digital Publishing Institute (MDPI), 2023). https://doi.org/10.3390/cancers15174279.

    Google Scholar 

  59. Lestari, W. A., Wahyuningsih, S., Gomez-Ruiz, S. & Wibowo, F. R. Drug loading ability and release study of various size small mesoporous silica nanoparticle as drug carrier. J Phys Conf Ser. IOP Publishing Ltd; (2022). https://doi.org/10.1088/1742-6596/2190/1/012032

  60. Lee, Y. & Thompson, D. H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol (Wiley-Blackwell, 2017). https://doi.org/10.1002/wnan.1450.

    Google Scholar 

  61. Cao, L. et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization. Int. Immunopharmacol. Elsevier B V. 72, 264–274. https://doi.org/10.1016/j.intimp.2019.04.020 (2019).

    Google Scholar 

  62. Hosonuma, M. & Yoshimura, K. Association between pH regulation of the tumor microenvironment and immunological state. Front. Oncol. Front. Media SA. https://doi.org/10.3389/fonc.2023.1175563 (2023).

    Google Scholar 

  63. Heredia, N. S. et al. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid). PLoS One Public. Libr. Sci. https://doi.org/10.1371/journal.pone.0264825 (2022).

    Google Scholar 

  64. Manirakiza, A., Irakoze, L. & Manirakiza, S. Aloe and its effects on cancer: A Narrative Literature Review [Internet]. www.eahealth.org.

  65. Ro, H. S., Jang, H. J., Kim, G. R., Park, S. J. & Lee, H. Y. Enhancement of the Anti-Skin Wrinkling Effects of Aloe arborescens Miller Extracts Associated with Lactic Acid Fermentation. Evidence-based Complementary and Alternative Medicine. Hindawi Limited; ;2020. (2020). https://doi.org/10.1155/2020/2743594

  66. Mashayekhi-Sardoo, H., Rezaee, R. & Karimi, G. Nigella sativa (black seed) safety: An overview. Asian Biomed. Sciendo https://doi.org/10.1515/abm-2020-0020 (2020).

    Google Scholar 

  67. Majdalawieh, A. F. & Fayyad, M. W. Recent advances on the anti-cancer properties of Nigella sativa, a widely used food additive. J. Ayurveda Integr. Med. https://doi.org/10.1016/j.jaim.2016.07.004 (2016).

    Google Scholar 

  68. Ali, A. M. et al. Cytotoxicity, phytochemical screening and genetic analysis of ginger (Zingiber officinale Rosc.) callus and rhizome. South. Afr. J. Bot. Elsevier B V. 151, 54–59. https://doi.org/10.1016/j.sajb.2021.11.011 (2022).

    Google Scholar 

  69. Mohammed, M. et al. In-vitro anticancer and cytotoxic activity of ginger extract on human breast cell lines . Khartoum J. Pharm. Sci. 1(1), 26–29 (2020).

    Google Scholar 

  70. Tsubamoto, H. et al. Repurposing itraconazole as an anticancer agent (Review). Oncol. Lett.  https://doi.org/10.3892/ol.2017.6325 (2017).

    Google Scholar 

  71. Isono, R. et al. Itraconazole increases resolvin e3 concentration and 12/15-lipoxygenase inhibitor attenuates Itraconazole cytotoxicity in cervical cancer cells. Anticancer Res. Int. Inst. Anticancer Res. 41, 4271–4276. https://doi.org/10.21873/anticanres.15231 (2021).

    Google Scholar 

  72. Molenaar, R. J. Ion channels in glioblastoma. ISRN Neurol. Hindawi Ltd. 2011, 1–7. https://doi.org/10.5402/2011/590249 (2011).

    Google Scholar 

  73. Haripriyaa, M. & Suthindhiran, K. Pharmacokinetics of nanoparticles: current knowledge, future directions and its implications in drug delivery. Futur J. Pharm. Sci. Springer Sci. Bus. Media LLC https://doi.org/10.1186/s43094-023-00569-y (2023).

    Google Scholar 

  74. Shah, D., Guo, Y., Ocando, J. & Shao, J. FITC labeling of human insulin and transport of FITC-insulin conjugates through MDCK cell monolayer. J. Pharm. Anal. Xi’an Jiaotong Univ. 9, 400–405. https://doi.org/10.1016/j.jpha.2019.08.002 (2019).

    Google Scholar 

  75. Simon, A., Darcsi, A., Kéry, Á. & Riethmüller, E. Blood-brain barrier permeability study of ginger constituents. J. Pharm. Biomed. Anal. https://doi.org/10.1016/j.jpba.2019.112820 (2020).

    Google Scholar 

  76. Pottoo, F. H. et al. Thymoquinone: review of its potential in the treatment of neurological diseases (Pharmaceuticals. MDPI, 2022). https://doi.org/10.3390/ph15040408.

    Google Scholar 

Download references