References
-
Ary Dotiwala, A. K., McCausland, C., Samra Affiliations, N. S. & Anatomy Head and Neck: Blood Brain Barrier.
-
Zhao, Y. et al. Factors influencing the blood-brain barrier permeability. Brain Res. https://doi.org/10.1016/j.brainres.2022.147937 (2022).
-
Mathew, E. N., Berry, B. C., Yang, H. W., Carroll, R. S. & Johnson, M. D. Delivering therapeutics to glioblastoma: overcoming biological constraints. Int. J. Mol. Sci. MDPI. https://doi.org/10.3390/ijms23031711 (2022).
-
Cha, G. D., Jung, S., Choi, S. H. & Kim, D. H. Local Drug Delivery Strategies for Glioblastoma Treatment. Brain Tumor Res. Treat. https://doi.org/10.14791/btrt.2022.0017 (2022).
-
Chen, C. et al. Active cargo loading into extracellular vesicles: Highlights the heterogeneous encapsulation behaviour. J. Extracell. Vesicles John Wiley Sons Inc https://doi.org/10.1002/jev2.12163 (2021).
-
Wang, L. et al. MicroRNAs of extracellular vesicles derived from mesenchymal stromal cells alleviate inflammation in dry eye disease by targeting the IRAK1/Table 2/NF-κB pathway. Ocular Surf. Elsevier Inc. 28, 131–140. https://doi.org/10.1016/j.jtos.2023.03.002 (2023).
-
Tajik, T., Baghaei, K., Moghadam, V. E., Farrokhi, N. & Salami, S. A. Extracellular vesicles of cannabis with high CBD content induce anticancer signaling in human hepatocellular carcinoma. Biomed. Pharmacotherapy Elsevier Masson s r l https://doi.org/10.1016/j.biopha.2022.113209 (2022).
-
Zhu, J., Wang, S., Yang, D., Xu, W. & Qian, H. Extracellular vesicles: emerging roles, biomarkers and therapeutic strategies in fibrotic diseases. J. Nanobiotechnol. BioMed. Cent. Ltd. https://doi.org/10.1186/s12951-023-01921-3 (2023).
-
Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol Nat. Res. https://doi.org/10.1038/s41565-021-00931-2 (2021).
-
Li, C. et al. Overcoming the blood-brain barrier: exosomes as theranostic nanocarriers for precision neuroimaging. J. Controlled Release https://doi.org/10.1016/j.jconrel.2022.08.002 (2022).
-
Cui, L., Perini, G., Palmieri, V., De Spirito, M. & Papi, M. Plant-derived extracellular vesicles as a novel frontier in cancer therapeutics. nanomaterials (Multidisciplinary Digital Publishing Institute (MDPI), 2024). https://doi.org/10.3390/nano14161331.
-
Alzahrani, F. A., Khan, M. I., Kameli, N., Alsahafi, E. & Riza, Y. M. Plant-derived extracellular vesicles and their exciting potential as the future of next-generation drug delivery (Biomolecules. MDPI, 2023). https://doi.org/10.3390/biom13050839.
-
Bhom, N., Somandi, K., Ramburrun, P. & Choonara, Y. E. Extracellular nanovesicles as neurotherapeutics for central nervous system disorders. Expert Opin Drug Deliv (Taylor and Francis Ltd., 2024). https://doi.org/10.1080/17425247.2024.2440099.
-
Ferizi, R., Ramadan, M. F. & Maxhuni, Q. Black seeds (Nigella sativa) medical application and pharmaceutical perspectives. J. Pharm. Bioallied Sci. https://doi.org/10.4103/jpbs.jpbs_364_22 (2023).
-
Loggenberg, S. R., Twilley, D., De Canha, M. N., Meyer, D. & Lall, N. The activity of Aloe arborescens miller varieties on wound-associated pathogens, wound healing and growth factor production. South. Afr. J. Bot. Elsevier B V. 147, 1096–1104. https://doi.org/10.1016/j.sajb.2022.04.010 (2022).
-
Shahrajabian, M. H., Sun, W. & Cheng, Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric Scand B Soil Plant Sci 546–556 (Taylor and Francis Ltd., 2019). https://doi.org/10.1080/09064710.2019.1606930.
-
Kurizaki, A., Watanabe, T. & Devkota, H. P. Chemical constituents from the flowers of Aloe arborescens. Nat. Prod. Commun. Nat. Prod. Incorporation https://doi.org/10.1177/1934578X19844135 (2019).
-
Khader, M. & Eckl, P. M. Thymoquinone: an emerging natural drug with a wide range of medical applications.
-
Mao, Q. Q. et al. Bioactive compounds and bioactivities of ginger (zingiber officinale roscoe). Foods (MDPI, 2019). https://doi.org/10.3390/foods8060185.
-
Du, S. et al. Extracellular vesicles: a rising star for therapeutics and drug delivery. J. Nanobiotechnol. BioMed. Cent. Ltd. https://doi.org/10.1186/s12951-023-01973-5 (2023).
-
Alomari, S. et al. Drug repurposing for glioblastoma and current advances in drug delivery—A comprehensive review of the literature. Biomolecules MDPI. https://doi.org/10.3390/biom11121870 (2021).
-
Anwer, M. S., Abdel-Rasol, M. A. & El-Sayed, W. M. Emerging therapeutic strategies in glioblastsoma: drug repurposing, mechanisms of resistance, precision medicine, and technological innovations. Clin. Exp. Med. Springer Sci. Bus. Media Deutschland GmbH. https://doi.org/10.1007/s10238-025-01631-0 (2025).
-
In silico drug repurposing: an antifungal drug, itraconazole, repurposed as an anticancer agent using molecular docking.
-
Wirth, F. & Ishida, K. Antifungal drugs: an updated review of central nervous system pharmacokinetics. Mycoses Blackwell Publishing Ltd. 63, 1047–1059. https://doi.org/10.1111/myc.13157 (2020).
-
Lee, H., Park, H., Noh, G. J. & Lee, E. S. pH-responsive hyaluronate-anchored extracellular vesicles to promote tumor-targeted drug delivery. Carbohydr. Polym. Elsevier Ltd. 202, 323–333. https://doi.org/10.1016/j.carbpol.2018.08.141 (2018).
-
Li, Y. J. et al. Gemcitabine loaded autologous exosomes for effective and safe chemotherapy of pancreatic cancer. Acta Biomater. Acta Mater. Inc. 101, 519–530. https://doi.org/10.1016/j.actbio.2019.10.022 (2020).
-
Xi, X. M., Chen-Meng, Xia, S. J. & Lu, R. Drug loading techniques for exosome-based drug delivery systems. Pharmazie 61–67 (Govi-Verlag Pharmazeutischer Verlag GmbH, 2021). https://doi.org/10.1691/ph.2021.0128.
-
Malvern Panalytical. Zetasizer Nano ZS User Software (Malvern Panalytical Ltd., Worcestershire, UK). Available at: https://www.malvernpanalytical.com
-
Carl Zeiss Microscopy GmbH.ZEISS SmartSEM Imaging Software. (Carl Zeiss Microscopy GmbH, Cambridge, UK). Available at: https://www.zeiss.com/microscopy
-
Moqejwa, T., Marimuthu, T., Kondiah, P. P. D. & Choonara, Y. E. Development of stable nano-sized transfersomes as a rectal colloid for enhanced delivery of cannabidiol. Pharm. https://doi.org/10.3390/pharmaceutics14040703 (2022).
-
Khalbas, A. H., Albayati, T. M., Ali, N. S. & Salih, I. K. Drug loading methods and kinetic release models using of mesoporous silica nanoparticles as a drug delivery system: a review. Afr. J. Chem. Eng. https://doi.org/10.1016/j.sajce.2024.08.013 (2024).
-
Waters Corporation. Empower Chromatography Data Software (Waters Corporation, Milford, MA, USA). Available at: https://www.waters.com
-
Rao, Nutan. Stability-indicating method development and validation of itraconazole and terbinafine. J. Pharm. Clinical. Innovare Acad. Sci. Pvt Ltd. https://doi.org/10.22159/ajpcr.2019.v12i9.33922 (2019).
-
PerkinElmer Inc. SpectrumTM Software for FT-IR Systems (PerkinElmer Inc., Beaconsfield, UK). Available at: https://www.perkinelmer.com
-
Kim, Y., Park, E. J., Kim, T. W. & Na, D. H. Recent progress in drug release testing methods of biopolymeric particulate system (Pharmaceutics. MDPI, 2021). https://doi.org/10.3390/pharmaceutics13081313.
-
Bohrey, S., Chourasiya, V. & Pandey, A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg Korea Nano Technol. Res. Soc. https://doi.org/10.1186/s40580-016-0061-2 (2016).
-
Son, G. H., Lee, B. J. & Cho, C. W. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J. Pharm. Investig Springer Neth. https://doi.org/10.1007/s40005-017-0320-1 (2017).
-
Hosseini, A. et al. Exosome-inspired targeting of cancer cells with enhanced affinity. J. Mater. Chem. B Royal Soc. Chem. 4, 768–778. https://doi.org/10.1039/c5tb01741f (2016).
-
Ngema, L. M. et al. Surface immobilization of Anti-VEGF peptide on spions for antiangiogenic and targeted delivery of Paclitaxel in Non-Small-Cell lung carcinoma. ACS Appl. Bio Mater. Am. Chem. Soc. 6, 2747–2759. https://doi.org/10.1021/acsabm.3c00224 (2023).
-
Logos Biosystems. CELENA® S Digital Imaging System Software (Logos Biosystems, Gyeonggi-do, South Korea). Available at: https://www.logosbio.com
-
Danaei, M. et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics (MDPI AG, 2018). https://doi.org/10.3390/pharmaceutics10020057.
-
Hersh, A. M., Alomari, S. & Tyler, B. M. Crossing the blood-brain barrier: advances in nanoparticle technology for drug delivery in neuro-oncology. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23084153 (2022).
-
Öztürk, K., Kaplan, M. & Çalış, S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int. J. Pharm. Elsevier B V. https://doi.org/10.1016/j.ijpharm.2024.124799 (2024).
-
Zha, S. et al. Functionalized Nanomaterials Capable of Crossing the Blood-Brain Barrier 1820–1845 (ACS Nano. American Chemical Society, 2024). https://doi.org/10.1021/acsnano.3c10674.
-
Golan, M. E. & Stice, S. L. Extracellular vesicle lyophilization for enhanced distribution to the point of care. Extracell. Vesicle Elsevier BV. 3, 100041. https://doi.org/10.1016/j.vesic.2024.100041 (2024).
-
Albakry, Z. et al. Nutritional composition and volatile compounds of Black Cumin (Nigella sativa L.) seed, fatty acid composition and tocopherols, polyphenols, and antioxidant activity of its essential oil. Horticulturae https://doi.org/10.3390/horticulturae8070575 (2022).
-
Puia, A. et al. The phytochemical constituents and therapeutic uses of genus aloe: A review. Not Bot. Horti Agrobot Cluj Napoca Acad. Press. 49, 1–16. https://doi.org/10.15835/nbha49212332 (2021).
-
Majid, A. The chemical constituents and Pharmacological effects of Nigella sativa. Journal of bioscience and applied research. Egypts Presidential Specialized Council Educ. Sci. Res. 4, 389–400. https://doi.org/10.21608/jbaar.2018.151793 (2018).
-
Huang, Q., Chen, X., Yu, S., Gong, G. & Shu, H. Research progress in brain-targeted nasal drug delivery. Front. Aging Neurosci. Front. Media SA. https://doi.org/10.3389/fnagi.2023.1341295 (2023).
-
Wang, P. et al. Exosomes from M1-polarized macrophages enhance Paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics Ivyspring Int. Publisher. 9, 1714–1727. https://doi.org/10.7150/thno.30716 (2019).
-
Ghadami, S. & Dellinger, K. The lipid composition of extracellular vesicles: applications in diagnostics and therapeutic delivery. Front. Mol. Biosci. Front. Media SA. https://doi.org/10.3389/fmolb.2023.1198044 (2023).
-
Li, P., Dai, X., Qu, L., Sui, Y. & Zhang, C. Dual responsive oligo(lysine)-modified pluronic F127 hydrogels for drug release of 5-fluorouracil. RSC Adv. Royal Soc. Chem. 10, 24507–24514. https://doi.org/10.1039/d0ra03207g (2020).
-
Hudiyanti, D., Al Khafiz, M. F., Anam, K., Siahaan, P. & Suyati, L. Assessing encapsulation of Curcumin in cocoliposome: in vitro study. Open. Chem. De Gruyter Open. Ltd. 19, 358–366. https://doi.org/10.1515/chem-2021-0036 (2021).
-
Jovanović, A. A. et al. Design and characterization of liposomal-based carriers for the encapsulation of rosa canina fruit extract. In Vitro Gastrointestinal Release Behavior. Plants 13 (Multidisciplinary Digital Publishing Institute (MDPI), 2024). https://doi.org/10.3390/plants13182608.
-
Ghezzi, M. et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Controlled Release https://doi.org/10.1016/j.jconrel.2021.02.031 (2021).
-
Lin, X., Yang, H., Su, L., Yang, Z. & Tang, X. Effect of size on the in vitro/in vivo drug release and degradation of exenatide-loaded PLGA microspheres. J. Drug Deliv Sci. Technol. Editions De Sante. 45, 346–356. https://doi.org/10.1016/j.jddst.2018.03.024 (2018).
-
Adepu, S. & Ramakrishna, S. Controlled drug delivery systems: current status and future directions. Molecules MDPI. https://doi.org/10.3390/molecules26195905 (2021).
-
Vaz-Salgado, M. A. et al. Recurrent Glioblastoma: A Review of the Treatment Options. Cancers (Basel) (Multidisciplinary Digital Publishing Institute (MDPI), 2023). https://doi.org/10.3390/cancers15174279.
-
Lestari, W. A., Wahyuningsih, S., Gomez-Ruiz, S. & Wibowo, F. R. Drug loading ability and release study of various size small mesoporous silica nanoparticle as drug carrier. J Phys Conf Ser. IOP Publishing Ltd; (2022). https://doi.org/10.1088/1742-6596/2190/1/012032
-
Lee, Y. & Thompson, D. H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol (Wiley-Blackwell, 2017). https://doi.org/10.1002/wnan.1450.
-
Cao, L. et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization. Int. Immunopharmacol. Elsevier B V. 72, 264–274. https://doi.org/10.1016/j.intimp.2019.04.020 (2019).
-
Hosonuma, M. & Yoshimura, K. Association between pH regulation of the tumor microenvironment and immunological state. Front. Oncol. Front. Media SA. https://doi.org/10.3389/fonc.2023.1175563 (2023).
-
Heredia, N. S. et al. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid). PLoS One Public. Libr. Sci. https://doi.org/10.1371/journal.pone.0264825 (2022).
-
Manirakiza, A., Irakoze, L. & Manirakiza, S. Aloe and its effects on cancer: A Narrative Literature Review [Internet]. www.eahealth.org.
-
Ro, H. S., Jang, H. J., Kim, G. R., Park, S. J. & Lee, H. Y. Enhancement of the Anti-Skin Wrinkling Effects of Aloe arborescens Miller Extracts Associated with Lactic Acid Fermentation. Evidence-based Complementary and Alternative Medicine. Hindawi Limited; ;2020. (2020). https://doi.org/10.1155/2020/2743594
-
Mashayekhi-Sardoo, H., Rezaee, R. & Karimi, G. Nigella sativa (black seed) safety: An overview. Asian Biomed. Sciendo https://doi.org/10.1515/abm-2020-0020 (2020).
-
Majdalawieh, A. F. & Fayyad, M. W. Recent advances on the anti-cancer properties of Nigella sativa, a widely used food additive. J. Ayurveda Integr. Med. https://doi.org/10.1016/j.jaim.2016.07.004 (2016).
-
Ali, A. M. et al. Cytotoxicity, phytochemical screening and genetic analysis of ginger (Zingiber officinale Rosc.) callus and rhizome. South. Afr. J. Bot. Elsevier B V. 151, 54–59. https://doi.org/10.1016/j.sajb.2021.11.011 (2022).
-
Mohammed, M. et al. In-vitro anticancer and cytotoxic activity of ginger extract on human breast cell lines . Khartoum J. Pharm. Sci. 1(1), 26–29 (2020).
-
Tsubamoto, H. et al. Repurposing itraconazole as an anticancer agent (Review). Oncol. Lett. https://doi.org/10.3892/ol.2017.6325 (2017).
-
Isono, R. et al. Itraconazole increases resolvin e3 concentration and 12/15-lipoxygenase inhibitor attenuates Itraconazole cytotoxicity in cervical cancer cells. Anticancer Res. Int. Inst. Anticancer Res. 41, 4271–4276. https://doi.org/10.21873/anticanres.15231 (2021).
-
Molenaar, R. J. Ion channels in glioblastoma. ISRN Neurol. Hindawi Ltd. 2011, 1–7. https://doi.org/10.5402/2011/590249 (2011).
-
Haripriyaa, M. & Suthindhiran, K. Pharmacokinetics of nanoparticles: current knowledge, future directions and its implications in drug delivery. Futur J. Pharm. Sci. Springer Sci. Bus. Media LLC https://doi.org/10.1186/s43094-023-00569-y (2023).
-
Shah, D., Guo, Y., Ocando, J. & Shao, J. FITC labeling of human insulin and transport of FITC-insulin conjugates through MDCK cell monolayer. J. Pharm. Anal. Xi’an Jiaotong Univ. 9, 400–405. https://doi.org/10.1016/j.jpha.2019.08.002 (2019).
-
Simon, A., Darcsi, A., Kéry, Á. & Riethmüller, E. Blood-brain barrier permeability study of ginger constituents. J. Pharm. Biomed. Anal. https://doi.org/10.1016/j.jpba.2019.112820 (2020).
-
Pottoo, F. H. et al. Thymoquinone: review of its potential in the treatment of neurological diseases (Pharmaceuticals. MDPI, 2022). https://doi.org/10.3390/ph15040408.
