Non-viral vectors as beacons of hope for reducing genotoxic risks of gene therapy

non-viral-vectors-as-beacons-of-hope-for-reducing-genotoxic-risks-of-gene-therapy
Non-viral vectors as beacons of hope for reducing genotoxic risks of gene therapy
  • Comment
  • Published:

Nature Biomedical Engineering (2026)Cite this article

Subjects

Although promising, gene and cell therapies can pose genotoxic risks that complicate clinical application. We describe the molecular basis of these risks, discuss tools to assess genotoxicity and highlight the advantages of non-viral genome engineering technologies for safer genome engineering.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$32.99 / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

$119.00 per year

only $9.92 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Ferrari, G., Thrasher, A. J. & Aiuti, A. Nat. Rev. Genet. 22, 216–234 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Duncan, C. N. et al. N. Engl. J. Med. 391, 1287–1301 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ott, M. G. et al. Nat. Med. 12, 401–409 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Braun, T. et al. Nat. Med. 31, 1145–1153 (2025).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, J. Y. & Doudna, J. A. Science 379, eadd8643 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Kalter, N. et al. Mol. Ther. Nucleic Acids 36, 102636 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anzalone, A. V. et al. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ivics, Z., Hackett, P. B., Plasterk, R. H. & Izsvák, Z. Cell 91, 501–510 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Gogol-Döring, A. et al. Mol. Ther. 24, 592–606 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Witte, I. P. et al. Science 388, eadt5199 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fell, C. W. et al. Nature 642, 1080–1089 (2025).

    Article  CAS  PubMed  Google Scholar 

  12. Modlich, U. et al. Blood 108, 2545–2553 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schwarzer, A. et al. Mol. Ther. 29, 3383–3397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Musunuru, K. et al. N. Engl. J. Med. 392, 2235–2243 (2025).

    Article  CAS  PubMed  Google Scholar 

  15. Bimbo, J. F. et al. J. Immunother. Cancer 13, e011759 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratory has been supported by the Innovative Medicines Initiative 2 Joint Undertaking (T2Evolve, grant 945393), by Stiftung Deutsche Krebshilfe (German Cancer Aid) as part of the preclinical cancer drug development network (preCDD) and the CAR Factory consortium (grant 70115200), by the Deutsche Forschungsgemeinschaft (German Research Foundation, grant IV 21/22-1), by the NC3Rs’ CRACK IT Challenge programme under grant NC/C022201/01 and by the German Cancer Consortium (DKTK) at the German Cancer Research Center (DKFZ), Heidelberg, Germany.

Author information

Authors and Affiliations

  1. Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany

    Marie-Madeleine Nzila, Ulrike Koehl & Zoltán Ivics

  2. Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany

    Ulrike Koehl & Zoltán Ivics

  3. German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany

    Zoltán Ivics

Authors

  1. Marie-Madeleine Nzila
  2. Ulrike Koehl
  3. Zoltán Ivics

Contributions

M.-M.N. prepared the figures and wrote the first draft of the manuscript. U.K. contributed to the writing of the manuscript. Z.I. extended and finalized the manuscript.

Corresponding author

Correspondence to Zoltán Ivics.

Ethics declarations

Competing interests

Z.I. is co-inventor of several patents relating to Sleeping Beauty transposon technology and is a member of the scientific advisory board of NanoCell Therapeutics. M.-M.N. and U.K. declare no competing interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nzila, MM., Koehl, U. & Ivics, Z. Non-viral vectors as beacons of hope for reducing genotoxic risks of gene therapy. Nat. Biomed. Eng (2026). https://doi.org/10.1038/s41551-025-01581-8

Download citation

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41551-025-01581-8