Chitosan-functionalized mesoporous silica nanoparticles co-loaded with chrysin and quercetin: a potent strategy against lung cancer cells

chitosan-functionalized-mesoporous-silica-nanoparticles-co-loaded-with-chrysin-and-quercetin:-a-potent-strategy-against-lung-cancer-cells
Chitosan-functionalized mesoporous silica nanoparticles co-loaded with chrysin and quercetin: a potent strategy against lung cancer cells

References

  1. Bhandari, B. & Ost, D. E. Cost-Effective diagnosis and staging strategies for lung cancer. Clin. Chest. Med. 46, 289–300 (2025).

    Google Scholar 

  2. Zhai, K., Mazurakova, A., Koklesova, L., Kubatka, P. & Büsselberg, D. Flavonoids synergistically enhance the anti-glioblastoma effects of chemotherapeutic drugs. Biomolecules 11, 1841 (2021).

    Google Scholar 

  3. Schabath, M. B. & Cote, M. L. Cancer progress and priorities: lung cancer. Cancer Epidemiol. Biomarkers Prev. 28, 1563–1579 (2019).

    Google Scholar 

  4. Ning, Q. et al. CHB patients with rtA181T-mutated HBV infection are associated with higher risk hepatocellular carcinoma due to increases in mutation rates of tumour suppressor genes. J. Viral Hepat. 30, 951–958 (2023).

    Google Scholar 

  5. Yu, J. et al. Phosphorylation of FOXN3 by NEK6 promotes pulmonary fibrosis through Smad signaling. Nat Commun 16, 1865. https://doi.org/10.1038/s41467-025-56922-7 (2025).

    Google Scholar 

  6. Jabbari, S., Ghamkhari, A., Javadzadeh, Y., Salehi, R. & Davaran, S. Doxorubicin and Chrysin combination chemotherapy with novel pH-responsive Poly [(lactide-co-glycolic acid)-block-methacrylic acid] nanoparticle. J. Drug Deliv. Sci. Technol. 46, 129–137 (2018).

    Google Scholar 

  7. Schuler, M. et al. First-line Afatinib versus chemotherapy in patients with non–small cell lung cancer and common epidermal growth factor receptor gene mutations and brain metastases. J. Thorac. Oncol. 11, 380–390 (2016).

    Google Scholar 

  8. Liang, X. J., Chen, C., Zhao, Y. & Wang, P. C. Circumventing tumor resistance to chemotherapy by nanotechnology. Multi-drug Resist. Cancer, 467–488 (2010).

  9. Azar, L. K., Dadashpour, M., Hashemi, M. & Zarghami, N. Design and development of nanostructured Co delivery of Artemisinin and Chrysin for targeting hTERT gene expression in breast cancer cell line: possible clinical application in cancer treatment. Asian Pac. J. Cancer Prevention: APJCP. 23, 919 (2022).

    Google Scholar 

  10. Talebi, M. et al. Emerging cellular and molecular mechanisms underlying anticancer indications of Chrysin. Cancer Cell Int. 21, 1–20 (2021).

    Google Scholar 

  11. Oršolić, N. et al. Antioxidative and anti-inflammatory activities of Chrysin and naringenin in a drug-induced bone loss model in rats. Int. J. Mol. Sci. 23, 2872 (2022).

    Google Scholar 

  12. Zeinali, M., Rezaee, S. A. & Hosseinzadeh, H. An overview on immunoregulatory and anti-inflammatory properties of Chrysin and flavonoids substances. Biomed. Pharmacother. 92, 998–1009 (2017).

    Google Scholar 

  13. Shahbaz, M. et al. Chrysin a promising anticancer agent: recent perspectives. Int. J. Food Prop. 26, 2294–2337 (2023).

    Google Scholar 

  14. Dhandapani, S. et al. Lipid-encapsulated gold nanoparticles: an advanced strategy for attenuating the inflammatory response in SARS-CoV-2 infection. J. Nanobiotechnol. 23, 15 (2025).

    Google Scholar 

  15. Dhandapani, S. et al. Biosynthesis of gold nanoparticles using Nigella sativa and curtobacterium proimmune K3 and evaluation of their anticancer activity. Mater. Sci. Engineering: C. 127, 112214 (2021).

    Google Scholar 

  16. Eslami Vaghar, M. et al. Artemisinin-loaded mesoporous silica nanoparticles/electrospun Poly (lactic-co-glycolic acid) composite nanofibers for enhanced anticancer efficiency in breast cancer cells. Cancer Nanotechnol. 15, 58 (2024).

    Google Scholar 

  17. Gou, K. et al. A pH-responsive chiral mesoporous silica nanoparticles for delivery of doxorubicin in tumor-targeted therapy. Colloids Surf., B. 221, 113027 (2023).

    Google Scholar 

  18. Dadashpour, M. et al. Sustained in vitro delivery of metformin-loaded mesoporous silica nanoparticles for delayed senescence and stemness preservation of adipose-derived stem cells. J. Drug Deliv. Sci. Technol. 87, 104769 (2023).

    Google Scholar 

  19. Wang, Y. et al. Smart nanoplatforms responding to the tumor microenvironment for precise drug delivery in cancer therapy. Int. J. Nanomed., 6253–6277 (2024).

  20. S, M. S. et al. Preparation and evaluation of mesoporous silica nanoparticles loaded Quercetin against bacterial infections in Oreochromis niloticus. Aquaculture Rep. 21, 100808. https://doi.org/10.1016/j.aqrep.2021.100808 (2021).

    Google Scholar 

  21. Amin, K. F. et al. Synthesis of mesoporous silica and chitosan-coated magnetite nanoparticles for heavy metal adsorption from wastewater. Environ. Nanatechnol. Monit. Manage. 20, 100801. https://doi.org/10.1016/j.enmm.2023.100801 (2023).

    Google Scholar 

  22. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 71, 209–249 (2021).

    Google Scholar 

  23. Wang, R. et al. 8-paradol from ginger exacerbates PINK1/Parkin mediated mitophagy to induce apoptosis in human gastric adenocarcinoma. Pharmacol. Res. 187, 106610. https://doi.org/10.1016/j.phrs.2022.106610 (2023).

    Google Scholar 

  24. Tsai, C. C. et al. Increase in apoptosis by combination of Metformin with Silibinin in human colorectal cancer cells. World J. Gastroenterology: WJG. 21, 4169 (2015).

    Google Scholar 

  25. Jafari-Gharabaghlou, D. et al. Combination of Metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells. Iran. J. basic. Med. Sci. 21, 1167 (2018).

    Google Scholar 

  26. Maruhashi, R. et al. Chrysin enhances anticancer drug-induced toxicity mediated by the reduction of claudin-1 and 11 expression in a spheroid culture model of lung squamous cell carcinoma cells. Sci. Rep. 9, 13753 (2019).

    Google Scholar 

  27. Lim, H. K., Kim, K. M., Jeong, S. Y., Choi, E. K. & Jung, J. Chrysin increases the therapeutic efficacy of docetaxel and mitigates docetaxel-induced edema. Integr. Cancer Ther. 16, 496–504 (2017).

    Google Scholar 

  28. Mehdi, S. H. et al. Chrysin sensitizes human lung cancer cells to tumour necrosis factor related apoptosis-inducing ligand (TRAIL) mediated apoptosis. Asian Pac. J. Cancer Biology. 4, 27–33 (2019).

    Google Scholar 

  29. Corradini, E. et al. Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants. Nat. Prod. Res. 25, 469–495 (2011).

    Google Scholar 

  30. Salehi, R. et al. Smart Poly (N-isopropylacrylamide)-block-poly (L-Lactide) nanoparticles for prolonged release of Naltrexone. Int. J. Polym. Mater. Polym. Biomaterials. 62, 686–694 (2013).

    Google Scholar 

  31. AbouAitah, K. et al. Folic acid–conjugated mesoporous silica particles as nanocarriers of natural prodrugs for cancer targeting and antioxidant action. Oncotarget 9, 26466 (2018).

    Google Scholar 

  32. Ghosh, N. et al. pH-responsive and targeted delivery of Chrysin via folic acid-functionalized mesoporous silica nanocarrier for breast cancer therapy. Int. J. Pharm. 631, 122555 (2023).

    Google Scholar 

  33. Dhingra, S. et al. Mesoporous silica nanoparticles: a versatile carrier platform in lung cancer management. Nanomed. (London England). 19, 1331–1346. https://doi.org/10.1080/17435889.2024.2348438 (2024).

    Google Scholar 

  34. Sarkar, A., Ghosh, S., Chowdhury, S., Pandey, B. & Sil, P. C. Targeted delivery of Quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim. Et Biophys. Acta (BBA)-General Subj. 1860, 2065–2075 (2016).

    Google Scholar 

  35. Farajzadeh, R. et al. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif. Cells Nanomed. Biotechnol. 46, 917–925 (2018).

    Google Scholar 

  36. Xiao, B. et al. Co-delivery of camptothecin and Curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J. Mater. Chem. B. 3, 7724–7733 (2015).

    Google Scholar 

  37. Yu, S. S. et al. Size-and charge-dependent non-specific uptake of pegylated nanoparticles by macrophages. Int. J. Nanomed., 799–813 (2012).

  38. Sabit, H. et al. Precision nanomedicine: navigating the tumor microenvironment for enhanced cancer immunotherapy and targeted drug delivery. Mol. Cancer. 24, 160 (2025).

    Google Scholar 

  39. Firouzi Amandi, A. et al. Enhanced anti-cancer effect of artemisinin-and curcumin-loaded Niosomal nanoparticles against human colon cancer cells. Med. Oncol. 40, 170 (2023).

    Google Scholar 

  40. Li, Y., Ertas, Y. N., Jafari, A., Taheri, M. & Pilehvar, Y. Co-delivery of Curcumin and Chrysin through pH-sensitive hyaluronan-modified Hollow mesoporous silica nanoparticles for enhanced synergistic anticancer efficiency against thyroid cancer cells. J. Drug Deliv. Sci. Technol. 87, 104787 (2023).

    Google Scholar 

  41. Jafari-Gharabaghlou, D., Dadashpour, M., Khanghah, O. J., Salmani-Javan, E. & Zarghami, N. Potentiation of Folate-Functionalized PLGA-PEG nanoparticles loaded with Metformin for the treatment of breast cancer: possible clinical application. Mol. Biol. Rep. 50, 3023–3033 (2023).

    Google Scholar 

  42. Amirsaadat, S., Jafari-Gharabaghlou, D., Dadashpour, M. & Zarghami, N. Potential anti-proliferative effect of nano-formulated Curcumin through modulating micro RNA-132, Cyclin D1, and hTERT genes expression in breast cancer cell lines. J. Clust. Sci., 1–10 (2023).

  43. Firouzi-Amandi, A. et al. Development, characterization, and in vitro evaluation of cytotoxic activity of Rutin loaded PCL-PEG nanoparticles against Skov3 ovarian cancer cell. Asian Pac. J. Cancer Prevention: APJCP. 23, 1951 (2022).

    Google Scholar 

  44. Tarahomi, M. et al. Niosomes nanoparticles as a novel approach in drug delivery enhances anticancer properties of Chrysin in human ovarian carcinoma cells (SKOV3): an in vitro study. Med. Oncol. 40, 87 (2023).

    Google Scholar 

  45. Alkahtani, S., Alarifi, S., Aljarba, N. H., Alghamdi, H. A. & Alkahtane, A. A. Mesoporous SBA-15 silica–loaded nano-formulation of quercetin: A probable radio-sensitizer for lung carcinoma. Dose-Response 20, 15593258211050532 (2022).

    Google Scholar 

  46. Hollville, E. & Martin, S. J. Measuring apoptosis by microscopy and flow cytometry. Curr. Protocols Immunol. 112,14.38. (2016).

  47. Dadashpour, M., Ganjibakhsh, M., Mousazadeh, H. & Nejati, K. Increased pro-apoptotic and anti-proliferative activities of Simvastatin encapsulated PCL-PEG nanoparticles on human breast cancer adenocarcinoma cells. J. Cluster Sci. 34, 211–222 (2023).

    Google Scholar 

  48. Martínez-Carmona, M., Lozano, D., Colilla, M. & Vallet-Regí, M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater. 65, 393–404 (2018).

    Google Scholar 

  49. Chunyan, W. & Valiyaveettil, S. Correlation of biocapping agents with cytotoxic effects of silver nanoparticles on human tumor cells. RSC Adv. 3, 14329–14338 (2013).

    Google Scholar 

  50. Mahalanobish, S., Kundu, M., Ghosh, S., Das, J. & Sil, P. C. Fabrication of phenyl boronic acid modified pH-responsive zinc oxide nanoparticles as targeted delivery of Chrysin on human A549 cells. Toxicol. Rep. 9, 961–969 (2022).

    Google Scholar 

  51. Sabzichi, M. et al. Chrysin loaded nanostructured lipid carriers (NLCs) triggers apoptosis in MCF-7 cancer cells by inhibiting the Nrf2 pathway. Process Biochem. 60, 84–91 (2017).

    Google Scholar 

  52. Kamat, S., Kumari, M. & Jayabaskaran, C. Infrared spectroscopy and flow cytometry studies on the apoptotic effect of nano-chrysin in HeLa cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 282, 121666 (2022).

    Google Scholar 

  53. Chen, H. Y. et al. Chrysin inhibit human melanoma A375. S2 cell migration and invasion via affecting MAPK signaling and NF-κB signaling pathway in vitro. Environ. Toxicol. 34, 434–442 (2019).

    Google Scholar 

  54. Wang, J. et al. Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway. Drug Des. Dev. Therapy, 721–733 (2018).

  55. Yang, B. et al. Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase‐10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J. Appl. Toxicol. 34, 105–112 (2014).

    Google Scholar 

  56. Fu, M. et al. Cyclin D1: normal and abnormal functions. Endocrinology 145, 5439–5447 (2004).

    Google Scholar 

  57. Musgrove, E. A., Caldon, C. E., Barraclough, J., Stone, A. & Sutherland, R. L. Cyclin D as a therapeutic target in cancer. Nat. Rev. Cancer. 11, 558–572 (2011).

    Google Scholar 

  58. Firouzi Amandi, A. et al. Fabrication of magnetic Niosomal platform for delivery of resveratrol: potential anticancer activity against human pancreatic cancer Capan-1 cell. Cancer Cell Int. 24, 46 (2024).

    Google Scholar 

Download references