References
-
Bhandari, B. & Ost, D. E. Cost-Effective diagnosis and staging strategies for lung cancer. Clin. Chest. Med. 46, 289–300 (2025).
-
Zhai, K., Mazurakova, A., Koklesova, L., Kubatka, P. & Büsselberg, D. Flavonoids synergistically enhance the anti-glioblastoma effects of chemotherapeutic drugs. Biomolecules 11, 1841 (2021).
-
Schabath, M. B. & Cote, M. L. Cancer progress and priorities: lung cancer. Cancer Epidemiol. Biomarkers Prev. 28, 1563–1579 (2019).
-
Ning, Q. et al. CHB patients with rtA181T-mutated HBV infection are associated with higher risk hepatocellular carcinoma due to increases in mutation rates of tumour suppressor genes. J. Viral Hepat. 30, 951–958 (2023).
-
Yu, J. et al. Phosphorylation of FOXN3 by NEK6 promotes pulmonary fibrosis through Smad signaling. Nat Commun 16, 1865. https://doi.org/10.1038/s41467-025-56922-7 (2025).
-
Jabbari, S., Ghamkhari, A., Javadzadeh, Y., Salehi, R. & Davaran, S. Doxorubicin and Chrysin combination chemotherapy with novel pH-responsive Poly [(lactide-co-glycolic acid)-block-methacrylic acid] nanoparticle. J. Drug Deliv. Sci. Technol. 46, 129–137 (2018).
-
Schuler, M. et al. First-line Afatinib versus chemotherapy in patients with non–small cell lung cancer and common epidermal growth factor receptor gene mutations and brain metastases. J. Thorac. Oncol. 11, 380–390 (2016).
-
Liang, X. J., Chen, C., Zhao, Y. & Wang, P. C. Circumventing tumor resistance to chemotherapy by nanotechnology. Multi-drug Resist. Cancer, 467–488 (2010).
-
Azar, L. K., Dadashpour, M., Hashemi, M. & Zarghami, N. Design and development of nanostructured Co delivery of Artemisinin and Chrysin for targeting hTERT gene expression in breast cancer cell line: possible clinical application in cancer treatment. Asian Pac. J. Cancer Prevention: APJCP. 23, 919 (2022).
-
Talebi, M. et al. Emerging cellular and molecular mechanisms underlying anticancer indications of Chrysin. Cancer Cell Int. 21, 1–20 (2021).
-
Oršolić, N. et al. Antioxidative and anti-inflammatory activities of Chrysin and naringenin in a drug-induced bone loss model in rats. Int. J. Mol. Sci. 23, 2872 (2022).
-
Zeinali, M., Rezaee, S. A. & Hosseinzadeh, H. An overview on immunoregulatory and anti-inflammatory properties of Chrysin and flavonoids substances. Biomed. Pharmacother. 92, 998–1009 (2017).
-
Shahbaz, M. et al. Chrysin a promising anticancer agent: recent perspectives. Int. J. Food Prop. 26, 2294–2337 (2023).
-
Dhandapani, S. et al. Lipid-encapsulated gold nanoparticles: an advanced strategy for attenuating the inflammatory response in SARS-CoV-2 infection. J. Nanobiotechnol. 23, 15 (2025).
-
Dhandapani, S. et al. Biosynthesis of gold nanoparticles using Nigella sativa and curtobacterium proimmune K3 and evaluation of their anticancer activity. Mater. Sci. Engineering: C. 127, 112214 (2021).
-
Eslami Vaghar, M. et al. Artemisinin-loaded mesoporous silica nanoparticles/electrospun Poly (lactic-co-glycolic acid) composite nanofibers for enhanced anticancer efficiency in breast cancer cells. Cancer Nanotechnol. 15, 58 (2024).
-
Gou, K. et al. A pH-responsive chiral mesoporous silica nanoparticles for delivery of doxorubicin in tumor-targeted therapy. Colloids Surf., B. 221, 113027 (2023).
-
Dadashpour, M. et al. Sustained in vitro delivery of metformin-loaded mesoporous silica nanoparticles for delayed senescence and stemness preservation of adipose-derived stem cells. J. Drug Deliv. Sci. Technol. 87, 104769 (2023).
-
Wang, Y. et al. Smart nanoplatforms responding to the tumor microenvironment for precise drug delivery in cancer therapy. Int. J. Nanomed., 6253–6277 (2024).
-
S, M. S. et al. Preparation and evaluation of mesoporous silica nanoparticles loaded Quercetin against bacterial infections in Oreochromis niloticus. Aquaculture Rep. 21, 100808. https://doi.org/10.1016/j.aqrep.2021.100808 (2021).
-
Amin, K. F. et al. Synthesis of mesoporous silica and chitosan-coated magnetite nanoparticles for heavy metal adsorption from wastewater. Environ. Nanatechnol. Monit. Manage. 20, 100801. https://doi.org/10.1016/j.enmm.2023.100801 (2023).
-
Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 71, 209–249 (2021).
-
Wang, R. et al. 8-paradol from ginger exacerbates PINK1/Parkin mediated mitophagy to induce apoptosis in human gastric adenocarcinoma. Pharmacol. Res. 187, 106610. https://doi.org/10.1016/j.phrs.2022.106610 (2023).
-
Tsai, C. C. et al. Increase in apoptosis by combination of Metformin with Silibinin in human colorectal cancer cells. World J. Gastroenterology: WJG. 21, 4169 (2015).
-
Jafari-Gharabaghlou, D. et al. Combination of Metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells. Iran. J. basic. Med. Sci. 21, 1167 (2018).
-
Maruhashi, R. et al. Chrysin enhances anticancer drug-induced toxicity mediated by the reduction of claudin-1 and 11 expression in a spheroid culture model of lung squamous cell carcinoma cells. Sci. Rep. 9, 13753 (2019).
-
Lim, H. K., Kim, K. M., Jeong, S. Y., Choi, E. K. & Jung, J. Chrysin increases the therapeutic efficacy of docetaxel and mitigates docetaxel-induced edema. Integr. Cancer Ther. 16, 496–504 (2017).
-
Mehdi, S. H. et al. Chrysin sensitizes human lung cancer cells to tumour necrosis factor related apoptosis-inducing ligand (TRAIL) mediated apoptosis. Asian Pac. J. Cancer Biology. 4, 27–33 (2019).
-
Corradini, E. et al. Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants. Nat. Prod. Res. 25, 469–495 (2011).
-
Salehi, R. et al. Smart Poly (N-isopropylacrylamide)-block-poly (L-Lactide) nanoparticles for prolonged release of Naltrexone. Int. J. Polym. Mater. Polym. Biomaterials. 62, 686–694 (2013).
-
AbouAitah, K. et al. Folic acid–conjugated mesoporous silica particles as nanocarriers of natural prodrugs for cancer targeting and antioxidant action. Oncotarget 9, 26466 (2018).
-
Ghosh, N. et al. pH-responsive and targeted delivery of Chrysin via folic acid-functionalized mesoporous silica nanocarrier for breast cancer therapy. Int. J. Pharm. 631, 122555 (2023).
-
Dhingra, S. et al. Mesoporous silica nanoparticles: a versatile carrier platform in lung cancer management. Nanomed. (London England). 19, 1331–1346. https://doi.org/10.1080/17435889.2024.2348438 (2024).
-
Sarkar, A., Ghosh, S., Chowdhury, S., Pandey, B. & Sil, P. C. Targeted delivery of Quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim. Et Biophys. Acta (BBA)-General Subj. 1860, 2065–2075 (2016).
-
Farajzadeh, R. et al. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif. Cells Nanomed. Biotechnol. 46, 917–925 (2018).
-
Xiao, B. et al. Co-delivery of camptothecin and Curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J. Mater. Chem. B. 3, 7724–7733 (2015).
-
Yu, S. S. et al. Size-and charge-dependent non-specific uptake of pegylated nanoparticles by macrophages. Int. J. Nanomed., 799–813 (2012).
-
Sabit, H. et al. Precision nanomedicine: navigating the tumor microenvironment for enhanced cancer immunotherapy and targeted drug delivery. Mol. Cancer. 24, 160 (2025).
-
Firouzi Amandi, A. et al. Enhanced anti-cancer effect of artemisinin-and curcumin-loaded Niosomal nanoparticles against human colon cancer cells. Med. Oncol. 40, 170 (2023).
-
Li, Y., Ertas, Y. N., Jafari, A., Taheri, M. & Pilehvar, Y. Co-delivery of Curcumin and Chrysin through pH-sensitive hyaluronan-modified Hollow mesoporous silica nanoparticles for enhanced synergistic anticancer efficiency against thyroid cancer cells. J. Drug Deliv. Sci. Technol. 87, 104787 (2023).
-
Jafari-Gharabaghlou, D., Dadashpour, M., Khanghah, O. J., Salmani-Javan, E. & Zarghami, N. Potentiation of Folate-Functionalized PLGA-PEG nanoparticles loaded with Metformin for the treatment of breast cancer: possible clinical application. Mol. Biol. Rep. 50, 3023–3033 (2023).
-
Amirsaadat, S., Jafari-Gharabaghlou, D., Dadashpour, M. & Zarghami, N. Potential anti-proliferative effect of nano-formulated Curcumin through modulating micro RNA-132, Cyclin D1, and hTERT genes expression in breast cancer cell lines. J. Clust. Sci., 1–10 (2023).
-
Firouzi-Amandi, A. et al. Development, characterization, and in vitro evaluation of cytotoxic activity of Rutin loaded PCL-PEG nanoparticles against Skov3 ovarian cancer cell. Asian Pac. J. Cancer Prevention: APJCP. 23, 1951 (2022).
-
Tarahomi, M. et al. Niosomes nanoparticles as a novel approach in drug delivery enhances anticancer properties of Chrysin in human ovarian carcinoma cells (SKOV3): an in vitro study. Med. Oncol. 40, 87 (2023).
-
Alkahtani, S., Alarifi, S., Aljarba, N. H., Alghamdi, H. A. & Alkahtane, A. A. Mesoporous SBA-15 silica–loaded nano-formulation of quercetin: A probable radio-sensitizer for lung carcinoma. Dose-Response 20, 15593258211050532 (2022).
-
Hollville, E. & Martin, S. J. Measuring apoptosis by microscopy and flow cytometry. Curr. Protocols Immunol. 112,14.38. (2016).
-
Dadashpour, M., Ganjibakhsh, M., Mousazadeh, H. & Nejati, K. Increased pro-apoptotic and anti-proliferative activities of Simvastatin encapsulated PCL-PEG nanoparticles on human breast cancer adenocarcinoma cells. J. Cluster Sci. 34, 211–222 (2023).
-
Martínez-Carmona, M., Lozano, D., Colilla, M. & Vallet-Regí, M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater. 65, 393–404 (2018).
-
Chunyan, W. & Valiyaveettil, S. Correlation of biocapping agents with cytotoxic effects of silver nanoparticles on human tumor cells. RSC Adv. 3, 14329–14338 (2013).
-
Mahalanobish, S., Kundu, M., Ghosh, S., Das, J. & Sil, P. C. Fabrication of phenyl boronic acid modified pH-responsive zinc oxide nanoparticles as targeted delivery of Chrysin on human A549 cells. Toxicol. Rep. 9, 961–969 (2022).
-
Sabzichi, M. et al. Chrysin loaded nanostructured lipid carriers (NLCs) triggers apoptosis in MCF-7 cancer cells by inhibiting the Nrf2 pathway. Process Biochem. 60, 84–91 (2017).
-
Kamat, S., Kumari, M. & Jayabaskaran, C. Infrared spectroscopy and flow cytometry studies on the apoptotic effect of nano-chrysin in HeLa cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 282, 121666 (2022).
-
Chen, H. Y. et al. Chrysin inhibit human melanoma A375. S2 cell migration and invasion via affecting MAPK signaling and NF-κB signaling pathway in vitro. Environ. Toxicol. 34, 434–442 (2019).
-
Wang, J. et al. Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway. Drug Des. Dev. Therapy, 721–733 (2018).
-
Yang, B. et al. Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase‐10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J. Appl. Toxicol. 34, 105–112 (2014).
-
Fu, M. et al. Cyclin D1: normal and abnormal functions. Endocrinology 145, 5439–5447 (2004).
-
Musgrove, E. A., Caldon, C. E., Barraclough, J., Stone, A. & Sutherland, R. L. Cyclin D as a therapeutic target in cancer. Nat. Rev. Cancer. 11, 558–572 (2011).
-
Firouzi Amandi, A. et al. Fabrication of magnetic Niosomal platform for delivery of resveratrol: potential anticancer activity against human pancreatic cancer Capan-1 cell. Cancer Cell Int. 24, 46 (2024).
