Selecting high-yield forage sorghum genotypes for ensiling: agronomic traits, fermentation parameters, and nutritional value

selecting-high-yield-forage-sorghum-genotypes-for-ensiling:-agronomic-traits,-fermentation-parameters,-and-nutritional-value
Selecting high-yield forage sorghum genotypes for ensiling: agronomic traits, fermentation parameters, and nutritional value

References

  1. Hora, F. F. et al. Nutritional parameters and performance of crossbred heifers fed with millet and BRS 716 biomass sorghum silages. J. Appl. Anim. Res. 51, 74–83. https://doi.org/10.1080/09712119.2022.2155172 (2023).

    Google Scholar 

  2. Pinho, R. M. A. et al. G. D. Sorghum cultivars of different purposes silage. Ciênc Rural. 45, 298–303. https://doi.org/10.1590/0103-8478cr20131532 (2015).

    Google Scholar 

  3. Santana, I. A. et al. Yield and nutritional value of sorghum genotype silages using azospirillum Brasilense in the Northern region of the state of Minas Gerais. Semin Ciênc Agrár. 43, 1721–1736. https://doi.org/10.5433/1679-0359.2022v43n4p1721 (2022).

    Google Scholar 

  4. Moura, M. M. A. et al. D. Assessment of sorghum genotypes for silage: nutritional value. Acta Scientiarum Anim. Sci. 46, e67788. https://doi.org/10.4025/actascianimsci.v46i1.67788 (2024).

    Google Scholar 

  5. Souza, J. F. et al. Yield and nutritional value of silage of different sorghum hybrids inoculated with azospirillum Brasilense. J. Appl. Anim. Res. 51, 424–433. https://doi.org/10.1080/09712119.2023.2216760 (2023).

    Google Scholar 

  6. Oliveira, R. F. et al. Productive and qualitative traits of sorghum genotypes used for silage under tropical conditions. Crops 4, 256–269. https://doi.org/10.3390/crops4020019 (2024).

    Google Scholar 

  7. Muck, R. E. et al. Silage review: recent advances and future uses of silage additives. J. Dairy. Sci. 101, 3980–4000. https://doi.org/10.3168/jds.2017-13839 (2018).

    Google Scholar 

  8. Silva, Y. A. et al. Chemical Composition, fermentation parameters and losses of silages from different hybrids of biomass sorghum. Grass Forage Sci. 80, e12706. https://doi.org/10.1111/gfs.12706 (2025).

    Google Scholar 

  9. Santos, H. G. et al. T. J. F. Sistema brasileiro de classificação de solos. (Embrapa, (2018).

  10. Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. D. M. & Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 22, 711–728. https://doi.org/10.1127/0941-2948/2013/0507 (2014).

    Google Scholar 

  11. Mendes, E. V. C. et al. Broom-type sorghum cultivars subject to planting densities: agroeconomic responses and forage potential. Ciênc Rural. 55, e20240437. https://doi.org/10.1590/0103-8478cr20240437 (2025).

    Google Scholar 

  12. Detmann, E., Rodrigues, J. P. P., Silva, T. E., Neto, B., Franco, M. & A. S. & O. Methods for Feed Analysis 3rd edn (Suprema, 2025).

  13. Shukla, G. K. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 29, 237–245. https://doi.org/10.1038/hdy.1972.87 (1972).

    Google Scholar 

  14. SAS Institute Inc. SAS® OnDemand for Academics: user’s guide (SAS Institute, 2014).

  15. Cruz, C. D. Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Sci. Agron. 35, 271–276. https://doi.org/10.4025/actasciagron.v35i3.21251 (2013).

    Google Scholar 

  16. Piepho, H. P. Stability analysis using the SAS system. Agron. J. 91, 154–160. https://doi.org/10.2134/agronj1999.00021962009100010024x (1999).

    Google Scholar 

  17. Reckling, M. et al. Methods of yield stability analysis in long-term field experiments. A review. Agron. Sustain. Dev. 41, 27. https://doi.org/10.1007/s13593-021-00681-4 (2021).

    Google Scholar 

  18. Figueiredo, J. M. M. D., Parrella, R. A. D. C. & Nunes, J. A. R. Genetic parameters and selection for multiple traits in sorghum for forage purposes. Crop Breed. Appl. Biotechnol. 24, e48122429. https://doi.org/10.1590/1984-70332024v24n2a22 (2024).

    Google Scholar 

  19. Bolsen, K. K. et al. Effect of silage additives on the microbial succession and fermentation process of alfalfa and corn silages. J. Dairy. Sci. 75, 3066–3083. https://doi.org/10.3168/jds.S0022-0302(92)78070-9 (1992).

    Google Scholar 

  20. Kung Jr, L., Shaver, R. D., Grant, R. J. & Schmidt, R. J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of dairy Science, 101, 4020–4033. (2018). https://doi.org/10.3168/jds.2017-13909 (2018).

  21. Pryce, J. D. A modification of Barker-Summerson method for the determination of lactic acid. Analyst 94, 1151–1152. https://doi.org/10.1039/an9699401151 (1969).

    Google Scholar 

  22. Sniffen, C. J., O’Connor, J. D., Van Soest, P. J., Fox, D. G. & Russell, J. B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70, 3562–3577. https://doi.org/10.2527/1992.70113562x (1992).

    Google Scholar 

  23. Valadares Filho, S. C., Saraiva, D. T., Benedeti, P. B., Silva, F. A. S. & Chizzotti, M. L. BR-CORTE: Exigências Nutricionais de Zebuínos Puros e Cruzados. https://doi.org/10.26626/978-85-8179-192-0.2023.B001 (Suprema, 2023).

  24. Casali, A. O. et al. Estimation of fibrous compounds contents in ruminant feeds with bags made from different textiles. Rev. Bras. Zootec. 38, 130–138. https://doi.org/10.1590/S1516-35982009000100017 (2009).

    Google Scholar 

  25. Ørskov, E. R. & McDonald, I. The Estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92, 499–503. https://doi.org/10.1017/S0021859600063048 (1979).

    Google Scholar 

  26. Alderman, G. & Blake, J. S. The energy and protein requirements according to AFRC (1993) of high genetic merit dairy cows. BSAP Occas Public. 19, 99–101. https://doi.org/10.1017/S0263967X00031864 (1995).

    Google Scholar 

  27. Mertens, D. R. & Loften, J. R. The effect of starch on forage fiber digestion kinetics in vitro. J. Dairy. Sci. 63, 1437–1446. https://doi.org/10.3168/jds.S0022-0302(80)83101-8 (1980).

    Google Scholar 

  28. Waldo, D. R., Smith, L. W. & Cox, E. L. Model of cellulose disappearance from the rumen. J. Dairy. Sci. 55, 125–129. https://doi.org/10.3168/jds.S0022-0302(72)85442-0 (1972).

    Google Scholar 

  29. Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd EdnAcademic Press,. (2011).

  30. Grant, N. P., Toy, J. J., Funnell-Harris, D. L. & Sattler, S. E. Deleterious mutations predicted in the sorghum (Sorghum bicolor) maturity (Ma) and Dwarf (Dw) genes from whole-genome resequencing. Sci. Rep. 13, 16638. https://doi.org/10.1038/s41598-023-42306-8 (2023).

    Google Scholar 

  31. Castro, F. M. R., Lombardi, G. M. R., Nunes, J. A. R., Parrella, R. A. & Bruzi, A. T. Accumulation of biomass and lignocellulosic compounds in photoperiod-sensitive biomass sorghum genotypes. Biomass Bioener. 158, 106344. https://doi.org/10.1016/j.biombioe.2022.106344 (2022).

    Google Scholar 

  32. Diatta-Holgate, E., Bergsma, B. & Tuinstra, M. R. Mutations in the dwarf3 gene confer height stability in sorghum. Plant. Gen. 17, e20466. https://doi.org/10.1002/tpg2.20466 (2024).

    Google Scholar 

  33. Silva, P. H. F. et al. Agronomic responses and herbage nutritive value of elephant grass (Cenchrus purpureus) genotypes grown as monocrops and mixed with butterfly pea (Clitoria ternatea). Crop Pasture Sci. 74, 1210–1222. https://doi.org/10.1071/CP22397 (2023).

    Google Scholar 

  34. Hashimoto, S. et al. The dominance model for heterosis explains culm length genetics in a hybrid sorghum variety. Sci. Rep. 11, 4532. https://doi.org/10.1038/s41598-021-84020-3 (2021).

    Google Scholar 

  35. Guerra, J. V. et al. Adaptability and stability of biomass sorghum genotypes using GGE biplot. Rev. Caatinga. 38, e12509. https://doi.org/10.1590/1983-21252025v3812509rc (2024).

    Google Scholar 

  36. Rodrigues, P. H. M., Pinedo, L. A., Meyer, P. M., da Silva, T. H. & Guimarães, I. C. D. S. B. Sorghum silage quality as determined by chemical–nutritional factors. Grass Forage Sci. 75, 462–473. https://doi.org/10.1111/gfs.12495 (2020).

    Google Scholar 

  37. Diogénes, L. V. et al. Effect of different additives on the quality of rehydrated corn grain silage: a systematic review. Ruminants 3, 425–444. https://doi.org/10.3390/ruminants3040035 (2023).

    Google Scholar 

  38. Anjos, A. N. A. et al. Protein and carbohydrate profiles of ‘Massai’ grass silage with pelleted citrus pulp and microbial inoculant. Pesq Agropec Bras. 57, e02732. https://doi.org/10.1590/S1678-3921.pab2022.v57.02732 (2022).

    Google Scholar 

  39. Fernandes, T., Paula, E. M., Sultana, H. & Ferraretto, L. F. Influence of sorghum cultivar, ensiling storage length, and microbial inoculation on fermentation profile, N fractions, ruminal in situ starch disappearance and aerobic stability of whole-plant sorghum silage. Anim. Feed Sci. Technol. 266, 114535. https://doi.org/10.1016/j.anifeedsci.2020.114535 (2020).

    Google Scholar 

  40. Silva, A. F. et al. Nutritional value, fermentation characteristics and aerobic stability of maize grain silage rehydrated with increasing levels of wet tomato byproduct. J. Anim. Feed Sci. 24, 121–130. https://doi.org/10.22358/jafs/192509/2024 (2025).

    Google Scholar 

  41. Lemos, M. F. et al. F. Grass size and butterfly pea inclusion modify the nutritional value of elephant grass silage. Pesq Agropec Bras. 56, e02409. https://doi.org/10.1590/S1678-3921.pab2021.v56.26948 (2021).

    Google Scholar 

  42. Hall, M. B. Challenges with nonfiber carbohydrate methods. J. Anim. Sci. 81, 3226–3232. https://doi.org/10.2527/2003.81123226x (2003).

    Google Scholar 

  43. Schofield, P., Pitt, R. E. & Pell, A. N. Kinetics of fiber digestion from in vitro gas production. J. Anim. Sci. 72, 2980–2991. https://doi.org/10.2527/1994.72112980x (1994).

    Google Scholar 

  44. Owen, F. G. Factors affecting nutritive value of corn and sorghum silage. J. Dairy. Sci. 50, 404–416. https://doi.org/10.3168/jds.S0022-0302(67)87435-6 (1967).

    Google Scholar 

  45. Behling Neto, A. et al. D. Nutritional value of sorghum silage of different purposes. Ciênc Agrotecnol. 41, 288–299. https://doi.org/10.1590/1413-70542017413038516 (2017).

    Google Scholar 

  46. Santana, O. I., Ramos, A. P., Duarte, J. I. S. & Arteaga, E. P. P. Forage production and rumen degradation kinetics of silage from brown midrib corn hybrids versus conventional corn hybrids. Rev. Mex Cienc. Pecu. 16, 575–592 (2025).

    Google Scholar 

  47. Hristov, A. N. et al. Effects of ensiling time on corn silage neutral detergent fiber degradability and relationship between laboratory fiber analyses and in vivo digestibility. J. Dairy. Sci. 103, 2333–2346. https://doi.org/10.3168/jds.2019-16917 (2020).

    Google Scholar 

  48. Peña, O. M., Velasquez, C., Ferreira, G. & Aguerre, M. J. Yield, nutritional composition, and in vitro ruminal digestibility of conventional and brown midrib (BMR) corn for silage as affected by planting population and harvest maturity. Agronomy 13, 1414. https://doi.org/10.3390/agronomy13051414 (2023).

    Google Scholar 

  49. Zhai, J. et al. Effects of Aspergillus Niger on cyanogenic glycosides removal and fermentation qualities of ratooning sorghum. Front. Microbiol. 14, 1128057. https://doi.org/10.3389/fmicb.2023.1128057 (2023).

    Google Scholar 

Download references