Iminodiacetic acid modification enables nanopore identification of major divalent metal ions in natural water samples

iminodiacetic-acid-modification-enables-nanopore-identification-of-major-divalent-metal-ions-in-natural-water-samples
Iminodiacetic acid modification enables nanopore identification of major divalent metal ions in natural water samples

References

  1. Hill, P. J., Doyle, L. R., Crawford, A. D., Myers, W. K. & Ashley, A. E. Selective catalytic reduction of N2 to N2H4 by a simple Fe complex. J. Am. Chem. Soc. 138, 13521–13524 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Aguado, S., Gómez-Gallego, M., Casarrubios, L. & Sierra, M. A. Electrocatalytic HER performance of [FeFe]-hydrogenase mimics bearing M-salen moieties (M=Zn, Ni, Fe, Mn). Chem. Eur. J. 31, e202403721 (2025).

    Article  CAS  PubMed  Google Scholar 

  3. López-Cabrelles, J. et al. Chemical design and magnetic ordering in thin layers of 2D metal–organic frameworks (MOFs). J. Am. Chem. Soc. 143, 18502–18510 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Del Rio, M., Grimalt Escarabajal, J. C., Turnes Palomino, G. & Palomino Cabello, C. Zinc/iron mixed-metal MOF-74 derived magnetic carbon nanorods for the enhanced removal of organic pollutants from water. Chem. Eng. J. 428, 131147 (2023).

    Google Scholar 

  5. Farhat, N. et al. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol. Plant. 38, 145 (2016).

    Article  Google Scholar 

  6. Isson, T. T. et al. Evolution of the global carbon cycle and climate regulation on Earth. Global Biogeochem. Cycles 34, e2018GB006061 (2020).

    Article  CAS  Google Scholar 

  7. Jorge, S. E., Ribeiro, D. M., Santos, M. N. N. & de Fátima Sonati, M. in Sickle Cell Anemia: From Basic Science to Clinical Practice (eds Costa, F. F. & Conran, N.) 1–22 (Springer, 2016).

  8. Kosman, D. J. Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology. J. Biol. Inorg. Chem. 15, 15–28 (2009).

    Article  PubMed  Google Scholar 

  9. Fuss, J. O., Tsai, C.-L., Ishida, J. P. & Tainer, J. A. Emerging critical roles of Fe–S clusters in DNA replication and repair. Biochim. Biophys. Acta Mol. Cell Res. 1853, 1253–1271 (2015).

    Article  CAS  Google Scholar 

  10. Wu, F. U. & Wu, C. W. Zinc in DNA replication and transcription. Annu. Rev. Nutr. 7, 251–272 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Sonone, S., Jadhav, S., Singh Sankhla, M. & Kumar, R. Water contamination by heavy metals and their toxic effect on aquaculture and human health through food chain. Lett. Appl. NanoBioScience 10, 2148–2166 (2020).

    Article  Google Scholar 

  12. Djingova, R., Mihaylova, V., Lyubomirova, V. & Tsalev, D. L. Multielement analytical spectroscopy in plant ionomics research. Appl. Spectrosc. Rev. 48, 384–424 (2013).

    Article  CAS  Google Scholar 

  13. Miller-Ihli, N. J. & Baker, S. A. Trace element composition of municipal waters in the United States: a comparison of ICP-AES and ICP-MS methods. J. Food Compost. Anal. 14, 619–629 (2001).

    Article  CAS  Google Scholar 

  14. Pujol, L. et al. Electrochemical sensors and devices for heavy metals assay in water: the French groups’ contribution. Front. Chem. 2, 19 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cui, L., Wu, J. & Ju, H. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 63, 276–286 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, M. et al. Real-time detection of 20 amino acids and discrimination of pathologically relevant peptides with functionalized nanopore. Nat. Methods 21, 609–618 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Y. et al. Peptide sequencing based on host–guest interaction-assisted nanopore sensing. Nat. Methods 21, 102–109 (2023).

    Article  PubMed  Google Scholar 

  18. Sheng, Y., Zhou, K., Liu, Q., Liu, L. & Wu, H.-C. Probing conformational polymorphism of DNA assemblies with nanopores. Anal. Chem. 92, 7485–7492 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Ramsay, W. J. & Bayley, H. Single-molecule determination of the isomers of d-glucose and d-fructose that bind to boronic acids. Angew. Chem. Int. Ed. 57, 2841–2845 (2018).

    Article  CAS  Google Scholar 

  20. Braha, O. et al. Designed protein pores as components for biosensors. Chem. Biol. 4, 497–505 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Braha, O. et al. Simultaneous stochastic sensing of divalent metal ions. Nat. Biotechnol. 18, 1005–1007 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Tian, Y. et al. A biomimetic mercury(ii)-gated single nanochannel. Chem. Commun. 49, 10679–10681 (2013).

    Article  CAS  Google Scholar 

  23. Chen, L., He, H., Xu, X. & Jin, Y. Single glass nanopore-based regenerable sensing platforms with a non-immobilized polyglutamic acid probe for selective detection of cupric ions. Anal. Chim. Acta 889, 98–105 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Wei, K., Yao, F. & Kang, X.-F. Single-molecule porphyrin-metal ion interaction and sensing application. Biosens. Bioelectron. 109, 272–278 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Wen, S. et al. Highly sensitive and selective DNA-based detection of mercury(II) with α-hemolysin nanopore. J. Am. Chem. Soc. 133, 18312–18317 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, G., Wang, L., Han, Y., Zhou, S. & Guan, X. Nanopore detection of copper ions using a polyhistidine probe. Biosens. Bioelectron. 53, 453–458 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Faller, M., Niederweis, M. & Schulz, G. E. The structure of a mycobacterial outer-membrane channel. Science 303, 1189–1192 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Derrington, I. M. et al. Nanopore DNA sequencing with MspA. Proc. Natl Acad. Sci. USA 107, 16060–16065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yan, S. et al. Single molecule ratcheting motion of peptides in a Mycobacterium smegmatis porin A (MspA) nanopore. Nano Lett. 21, 6703–6710 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single–amino acid resolution using nanopores. Science 374, 1509–1513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao, J. et al. Giant single molecule chemistry events observed from a tetrachloroaurate(III) embedded Mycobacterium smegmatis porin A nanopore. Nat. Commun. 10, 5668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, S. et al. Single molecule observation of hard–soft-acid–base (HSAB) interaction in engineered Mycobacterium smegmatis porin A (MspA) nanopores. Chem. Sci. 11, 879–887 (2020).

    Article  CAS  Google Scholar 

  33. Sun, W. et al. Nanopore discrimination of rare earth elements. Nat. Nanotechnol. 20, 523–531 (2025).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, K. et al. Unambiguous discrimination of all 20 proteinogenic amino acids and their modifications by nanopore. Nat. Methods 21, 92–101 (2023).

    Article  PubMed  Google Scholar 

  35. Wang, Y. et al. Identification of nucleoside monophosphates and their epigenetic modifications using an engineered nanopore. Nat. Nanotechnol. 17, 976–983 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, K. et al. Simultaneous identification of major thyroid hormones by a nickel immobilized biological nanopore. Nano Lett. 24, 305–311 (2023).

    Article  PubMed  Google Scholar 

  37. Ouyang, Y., Wang, K., Jia, W., Zhang, P. & Huang, S. Simultaneous identification of vitamins B1, B3, B5, and B6 by an engineered nanopore. Nano Lett. 24, 11944–11953 (2024).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, S. et al. A nanopore-based saccharide sensor. Angew. Chem. Int. Ed. 61, e202203769 (2022).

    Article  CAS  Google Scholar 

  39. Jeong, H., Byeon, E., Kim, D.-H., Maszczyk, P. & Lee, J.-S. Heavy metals and metalloid in aquatic invertebrates: a review of single/mixed forms, combination with other pollutants, and environmental factors. Mar. Pollut. Bull. 191, 114959 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Kaushik, P., Khandelwal, R., Rawat, N. & Sharma, M. K. Environmental hazards of heavy metal pollution and toxicity: a review. Flora Fauna 28, 315–327 (2022).

    Article  Google Scholar 

  41. Bjerregaard, P., Andersen, C. B. I. & Andersen, O. in Handbook on the Toxicology of Metals (eds Nordberg, G. F. & Costa, M.) 593–627 (Academic Press, 2022).

  42. Feng, Y., Teo, W. K., Siow, K. S., Tan, K. L. & Hsieh, A. K. The corrosion behaviour of copper in neutral tap water. Part I: corrosion mechanisms. Corros. Sci. 38, 369–385 (1996).

    Article  CAS  Google Scholar 

  43. Zhang, M., Sun, X., Hu, Y., Chen, G. & Xu, J. The influence of anthropogenic activities on heavy metal pollution of estuary sediment from the coastal East China Sea in the past nearly 50 years. Mar. Pollut. Bull. 181, 113872 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Huang, S. The machine learning code designed for direct nanopore based divalent metal ion sensing. Figshare https://doi.org/10.6084/m9.figshare.30102343.v1 (2025).

Download references