Pulmonary toxicity of polymethyl methacrylate nanoplastics via intratracheal intubation in mice

pulmonary-toxicity-of-polymethyl-methacrylate-nanoplastics-via-intratracheal-intubation-in-mice
Pulmonary toxicity of polymethyl methacrylate nanoplastics via intratracheal intubation in mice

References

  1. Dokl, M. et al. Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050. Sustain. Prod. Consump. 51, 498–518. https://doi.org/10.1016/j.spc.2024.09.025 (2024).

    Google Scholar 

  2. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782. https://doi.org/10.1126/sciadv.1700782 (2017).

    Google Scholar 

  3. Andoh, C. N., Attiogbe, F., Bonsu Ackerson, N. O., Antwi, M. & Adu-Boahen, K. Fourier Transform Infrared Spectroscopy: An analytical technique for microplastic identification and quantification. Infrared Phys. Technol. 136, 105070. https://doi.org/10.1016/j.infrared.2023.105070 (2024).

    Google Scholar 

  4. Jakubowicz, I., Enebro, J. & Yarahmadi, N. Challenges in the search for nanoplastics in the environment—A critical review from the polymer science perspective. Polym. Testing 93, 106953. https://doi.org/10.1016/j.polymertesting.2020.106953 (2021).

    Google Scholar 

  5. Boughbina-Portolés, A. & Campíns-Falcó, P. Assessing the size transformation of nanoplastics in natural water matrices. Sci. Total Environ. 953, 176225. https://doi.org/10.1016/j.scitotenv.2024.176225 (2024).

    Google Scholar 

  6. Wu, X. et al. Critical effect of biodegradation on long-term microplastic weathering in sediment environments: A systematic review. J. Hazard. Mater. 437, 129287. https://doi.org/10.1016/j.jhazmat.2022.129287 (2022).

    Google Scholar 

  7. Chubarenko, I., Efimova, I., Bagaeva, M., Bagaev, A. & Isachenko, I. On mechanical fragmentation of single-use plastics in the sea swash zone with different types of bottom sediments: Insights from laboratory experiments. Mar. Pollut. Bull. 150, 110726. https://doi.org/10.1016/j.marpolbul.2019.110726 (2020).

    Google Scholar 

  8. Li, M. et al. Cotransport and deposition of iron oxides with different-sized plastic particles in saturated quartz sand. Environ. Sci. Technol. 53, 3547–3557. https://doi.org/10.1021/acs.est.8b06904 (2019).

    Google Scholar 

  9. Arp, H. P. H. et al. Weathering plastics as a planetary boundary threat: exposure, fate, and hazards. Environ. Sci. Technol. 55, 7246–7255. https://doi.org/10.1021/acs.est.1c01512 (2021).

    Google Scholar 

  10. Wu, X. et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater. Water Res. 188, 116456. https://doi.org/10.1016/j.watres.2020.116456 (2021).

    Google Scholar 

  11. Wu, X. et al. Photo aging of polypropylene microplastics in estuary water and coastal seawater: Important role of chlorine ion. Water Res. 202, 117396. https://doi.org/10.1016/j.watres.2021.117396 (2021).

    Google Scholar 

  12. Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N. & Fava, F. Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia. Mar. Environ. Res. 158, 104949. https://doi.org/10.1016/j.marenvres.2020.104949 (2020).

    Google Scholar 

  13. Barría, C., Brandts, I., Tort, L., Oliveira, M. & Teles, M. Effect of nanoplastics on fish health and performance: A review. Mar. Pollut. Bull. 151, 110791. https://doi.org/10.1016/j.marpolbul.2019.110791 (2020).

    Google Scholar 

  14. Wang, W. et al. Effects of polyethylene microplastics on cell membranes: A combined study of experiments and molecular dynamics simulations. J. Hazard Mater. 429, 128323. https://doi.org/10.1016/j.jhazmat.2022.128323 (2022).

    Google Scholar 

  15. Zaki, M. R. M. & Aris, A. Z. An overview of the effects of nanoplastics on marine organisms. Sci. Total Environ. 831, 154757. https://doi.org/10.1016/j.scitotenv.2022.154757 (2022).

    Google Scholar 

  16. Ferreira, I., Venâncio, C., Lopes, I. & Oliveira, M. Nanoplastics and marine organisms: What has been studied?. Environ. Toxicol. Pharmacol. 67, 1–7. https://doi.org/10.1016/j.etap.2019.01.006 (2019).

    Google Scholar 

  17. Gonçalves, J. M. & Bebianno, M. J. Nanoplastics impact on marine biota: A review. Environ. Pollut. 273, 116426. https://doi.org/10.1016/j.envpol.2021.116426 (2021).

    Google Scholar 

  18. Pérez-Reverón, R. et al. Nanoplastics in the soil environment: Analytical methods, occurrence, fate and ecological implications. Environ. Pollut. 317, 120788. https://doi.org/10.1016/j.envpol.2022.120788 (2023).

    Google Scholar 

  19. Eberhard, T., Casillas, G., Zarus, G. M. & Barr, D. B. Systematic review of microplastics and nanoplastics in indoor and outdoor air: identifying a framework and data needs for quantifying human inhalation exposures. J. Expo Sci. Environ. Epidemiol. 34, 185–196. https://doi.org/10.1038/s41370-023-00634-x (2024).

    Google Scholar 

  20. Yan, Z. et al. Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status. Environ. Sci. Technol. 56, 414–421. https://doi.org/10.1021/acs.est.1c03924 (2022).

    Google Scholar 

  21. Amato-Lourenço, L. F. et al. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 416, 126124. https://doi.org/10.1016/j.jhazmat.2021.126124 (2021).

    Google Scholar 

  22. Abbasi, S. & Turner, A. Human exposure to microplastics: A study in Iran. J. Hazard. Mater. 403, 123799. https://doi.org/10.1016/j.jhazmat.2020.123799 (2021).

    Google Scholar 

  23. Nihart, A. J. et al. Bioaccumulation of microplastics in decedent human brains. Nat. Med. https://doi.org/10.1038/s41591-024-03453-1 (2025).

    Google Scholar 

  24. Leslie, H. A. et al. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 163, 107199. https://doi.org/10.1016/j.envint.2022.107199 (2022).

    Google Scholar 

  25. Ragusa, A. et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 146, 106274. https://doi.org/10.1016/j.envint.2020.106274 (2021).

    Google Scholar 

  26. Xu, D., Ma, Y., Han, X. & Chen, Y. Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. J. Hazard. Mater. 417, 126092. https://doi.org/10.1016/j.jhazmat.2021.126092 (2021).

    Google Scholar 

  27. Domenech, J. et al. Long-term effects of polystyrene nanoplastics in human intestinal Caco-2 cells. Biomolecules. 11 (2021).

  28. An, R. et al. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology 449, 152665. https://doi.org/10.1016/j.tox.2020.152665 (2021).

    Google Scholar 

  29. Shen, R. et al. Accumulation of polystyrene microplastics induces liver fibrosis by activating cGAS/STING pathway. Environ. Pollut. 300, 118986. https://doi.org/10.1016/j.envpol.2022.118986 (2022).

    Google Scholar 

  30. Chen, Y.-C. et al. The nephrotoxic potential of polystyrene microplastics at realistic environmental concentrations. J. Hazard. Mater. 427, 127871. https://doi.org/10.1016/j.jhazmat.2021.127871 (2022).

    Google Scholar 

  31. Yang, Q. et al. Oral feeding of nanoplastics affects brain function of mice by inducing macrophage IL-1 signal in the intestine. Cell Rep. 42, 112346. https://doi.org/10.1016/j.celrep.2023.112346 (2023).

    Google Scholar 

  32. Wang, X. et al. Effects of polystyrene nanoplastic gestational exposure on mice. Chemosphere 324, 138255. https://doi.org/10.1016/j.chemosphere.2023.138255 (2023).

    Google Scholar 

  33. Jin, H. et al. Polystyrene microplastics induced male reproductive toxicity in mice. J. Hazard. Mater. 401, 123430. https://doi.org/10.1016/j.jhazmat.2020.123430 (2021).

    Google Scholar 

  34. Fournier, S. B. et al. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part. Fibre Toxicol. 17, 55. https://doi.org/10.1186/s12989-020-00385-9 (2020).

    Google Scholar 

  35. Myers, S. D. Jr., Streiff, M., Dulberger, A. R., American, M. & Sanders, C. D. Polymethylmethacrylate pulmonary embolism following vertebroplasty. Cureus 13, e17314. https://doi.org/10.7759/cureus.17314 (2021).

    Google Scholar 

  36. Rodriguez-Arguisjuela, M. et al. Lung injury in patients age 75 years and older with the use of polymethylmethacrylate fenestrated pedicle screws. Spine J. 21, 430–437. https://doi.org/10.1016/j.spinee.2020.11.006 (2021).

    Google Scholar 

  37. Venmans, A., Lohle, P. N. M., van Rooij, W. J., Verhaar, H. J. J. & Mali, W. P. T. M. Frequency and outcome of pulmonary polymethylmethacrylate embolism during percutaneous vertebroplasty. Am. J. Neuroradiol. 29, 1983. https://doi.org/10.3174/ajnr.A1269 (2008).

    Google Scholar 

  38. Bhat, M. A. Airborne microplastic contamination across diverse university indoor environments: A comprehensive ambient analysis. Air Qual. Atmos. Health 17, 1851–1866. https://doi.org/10.1007/s11869-024-01548-9 (2024).

    Google Scholar 

  39. Gossmann, I. et al. Occurrence and backtracking of microplastic mass loads including tire wear particles in northern Atlantic air. Nat. Commun. 14, 3707. https://doi.org/10.1038/s41467-023-39340-5 (2023).

    Google Scholar 

  40. Development(OECD), O. f. E. C.-o. a. Test No. 412: Subacute Inhalation Toxicity: 28-Day Study. (2018).

  41. Zielonka, T. M., Wałajtys-Rode, E., Chazan, R. & Droszcz, W. Extracellular components of bronchoalveolar lavage fluid (BALF) as a marker of interstitial pulmonary disease activity. I. Protein concentration. Przegl Lek 55, 581–585 (1998).

    Google Scholar 

  42. Davidson, K. R., Ha, D. M., Schwarz, M. I. & Chan, E. D. Bronchoalveolar lavage as a diagnostic procedure: a review of known cellular and molecular findings in various lung diseases. J. Thorac. Dis. 12, 4991–5019. https://doi.org/10.21037/jtd-20-651 (2020).

    Google Scholar 

  43. Hayden, J. M. et al. Induction of monocyte differentiation and foam cell formation in vitro by 7-ketocholesterol. J. Lipid Res. 43, 26–35 (2002).

    Google Scholar 

  44. Kwak, D. et al. CD36/Lyn kinase interactions within macrophages promotes pulmonary fibrosis in response to oxidized phospholipid. Respir. Res. 24, 314. https://doi.org/10.1186/s12931-023-02629-6 (2023).

    Google Scholar 

  45. Yang, S. et al. Inhalation exposure to polystyrene nanoplastics induces chronic obstructive pulmonary disease-like lung injury in mice through multi-dimensional assessment. Environ. Pollut. 347, 123633. https://doi.org/10.1016/j.envpol.2024.123633 (2024).

    Google Scholar 

  46. Zhang, T. et al. Multi-dimensional evaluation of cardiotoxicity in mice following respiratory exposure to polystyrene nanoplastics. Part Fibre Toxicol. 20, 46. https://doi.org/10.1186/s12989-023-00557-3 (2023).

    Google Scholar 

  47. Wang, Q. et al. Polystyrene nanoplastics aggravate house dust mite induced allergic airway inflammation through EGFR/ERK-dependent lung epithelial barrier dysfunction. Ecotoxicol. Environ. Saf. 298, 118329. https://doi.org/10.1016/j.ecoenv.2025.118329 (2025).

    Google Scholar 

  48. Geiser, M. & Kreyling, W. G. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol. 7, 2. https://doi.org/10.1186/1743-8977-7-2 (2010).

    Google Scholar 

  49. Sukhanova, A. et al. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett. 13, 44. https://doi.org/10.1186/s11671-018-2457-x (2018).

    Google Scholar 

  50. Gonzalez-Vega, J. G. et al. Lung models to evaluate silver nanoparticles’ toxicity and their impact on human health. Nanomaterials (Basel). 12, https://doi.org/10.3390/nano12132316 (2022).

  51. Hunschede, S., Kubant, R., Akilen, R., Thomas, S. & Anderson, G. H. Decreased appetite after high-intensity exercise correlates with increased plasma interleukin-6 in normal-weight and overweight/obese boys. Curr. Dev. Nutr. 1, e000398. https://doi.org/10.3945/cdn.116.000398 (2017).

    Google Scholar 

  52. Patsalos, O., Dalton, B. & Himmerich, H. Effects of IL-6 signaling pathway inhibition on weight and BMI: A systematic review and meta-analysis. Int. J. Mol. Sci. 21 (2020).

  53. Romanatto, T. et al. TNF-alpha acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient–effects on leptin and insulin signaling pathways. Peptides 28, 1050–1058. https://doi.org/10.1016/j.peptides.2007.03.006 (2007).

    Google Scholar 

  54. Patsalos, O., Dalton, B., Leppanen, J., Ibrahim, M. A. A. & Himmerich, H. Impact of TNF-α inhibitors on body weight and bmi: a systematic review and meta-analysis. Front. Pharmacol. 11, 481. https://doi.org/10.3389/fphar.2020.00481 (2020).

    Google Scholar 

  55. Noël-Georis, I., Bernard, A., Falmagne, P. & Wattiez, R. Database of bronchoalveolar lavage fluid proteins. J. Chromatogr. B 771, 221–236. https://doi.org/10.1016/S1570-0232(02)00114-9 (2002).

    Google Scholar 

  56. Domagała-Kulawik, J., Skirecki, T., Maskey-Warzechowska, M., Grubek-Jaworska, H. & Chazan, R. Bronchoalveolar lavage total cell count in interstitial lung diseases—does it matter?. Inflammation 35, 803–809. https://doi.org/10.1007/s10753-011-9378-5 (2012).

    Google Scholar 

  57. Yang, Y. et al. Bronchoalveolar lavage fluid-derived exosomes: a novel role contributing to lung cancer growth. Front. Oncol. 9, 197. https://doi.org/10.3389/fonc.2019.00197 (2019).

    Google Scholar 

  58. Sobiecka, M. et al. Bronchoalveolar lavage cell count and lymphocytosis are the important discriminators between fibrotic hypersensitivity pneumonitis and idiopathic pulmonary fibrosis. Diagnostics (Basel). 13, https://doi.org/10.3390/diagnostics13050935 (2023).

  59. Agarwal, P., Gordon, S. & Martinez, F. O. Foam cell macrophages in tuberculosis. Front. Immunol. 12, 775326. https://doi.org/10.3389/fimmu.2021.775326 (2021).

    Google Scholar 

  60. Romero, F. et al. A pneumocyte-macrophage paracrine lipid axis drives the lung toward fibrosis. Am. J. Respir. Cell Mol. Biol. 53, 74–86. https://doi.org/10.1165/rcmb.2014-0343OC (2015).

    Google Scholar 

  61. Hsieh, M. H. et al. Surfactant protein D inhibits lipid-laden foamy macrophages and lung inflammation in chronic obstructive pulmonary disease. Cell Mol. Immunol. 20, 38–50. https://doi.org/10.1038/s41423-022-00946-2 (2023).

    Google Scholar 

  62. Ordway, D., Henao-Tamayo, M., Orme, I. M. & Gonzalez-Juarrero, M. Foamy macrophages within lung granulomas of mice infected with Mycobacterium tuberculosis express molecules characteristic of dendritic cells and antiapoptotic markers of the TNF receptor-associated factor family. J. Immunol. 175, 3873–3881. https://doi.org/10.4049/jimmunol.175.6.3873 (2005).

    Google Scholar 

  63. Chrabańska, M., Mazur, A. & Stęplewska, K. Histopathological pulmonary findings of survivors and autopsy COVID-19 cases: A bi-center study. Medicine. 101 (2022).

  64. Zhu, Y., Choi, D., Somanath, P. R. & Zhang, D. Lipid-laden macrophages in pulmonary diseases. Cells. 13, https://doi.org/10.3390/cells13110889 (2024).

  65. Pramanik, S. & Sil, A. K. Cigarette smoke extract induces foam cell formation by impairing machinery involved in lipid droplet degradation. Pflugers Arch. 476, 59–74. https://doi.org/10.1007/s00424-023-02870-4 (2024).

    Google Scholar 

  66. Liu, J. et al. PM2.5 aggravates the lipid accumulation, mitochondrial damage and apoptosis in macrophage foam cells. Environ. Pollut. 249, 482–490. https://doi.org/10.1016/j.envpol.2019.03.045 (2019).

    Google Scholar 

  67. Cao, Y. et al. Foam cell formation by particulate matter (PM) exposure: a review. Inhal. Toxicol. 28, 583–590. https://doi.org/10.1080/08958378.2016.1236157 (2016).

    Google Scholar 

  68. Guo, C. et al. Silica nanoparticles promoted pro-inflammatory macrophage and foam cell transformation via ROS/PPARγ/NF-κB signaling. Sci. Total Environ. 881, 163430. https://doi.org/10.1016/j.scitotenv.2023.163430 (2023).

    Google Scholar 

  69. Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8(+) T cells in tumors. Immunity 54, 1561–1577. https://doi.org/10.1016/j.immuni.2021.05.003 (2021).

    Google Scholar 

  70. Li, X. et al. Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/beta-catenin signaling pathway in mice. Ecotoxicol. Environ. Saf. 232, 113238. https://doi.org/10.1016/j.ecoenv.2022.113238 (2022).

    Google Scholar 

  71. Kwabena Danso, I., Woo, J. H., Hoon Baek, S., Kim, K. & Lee, K. Pulmonary toxicity assessment of polypropylene, polystyrene, and polyethylene microplastic fragments in mice. Toxicol. Res. 40, 313–323. https://doi.org/10.1007/s43188-023-00224-x (2024).

    Google Scholar 

  72. Gou, Z., Wu, H., Li, S., Liu, Z. & Zhang, Y. Airborne micro- and nanoplastics: emerging causes of respiratory diseases. Part Fibre Toxicol. 21, 50. https://doi.org/10.1186/s12989-024-00613-6 (2024).

    Google Scholar 

  73. Woo, J. H. et al. Polypropylene nanoplastic exposure leads to lung inflammation through p38-mediated NF-kappaB pathway due to mitochondrial damage. Part Fibre Toxicol. 20, 2. https://doi.org/10.1186/s12989-022-00512-8 (2023).

    Google Scholar 

  74. Jin, Y. J. et al. Characterisation of changes in global genes expression in the lung of ICR mice in response to the inflammation and fibrosis induced by polystyrene nanoplastics inhalation. Toxicol. Res. 39, 1–25. https://doi.org/10.1007/s43188-023-00188-y (2023).

    Google Scholar 

  75. Ma, R. et al. Amorphous silica nanoparticles accelerated atherosclerotic lesion progression in ApoE(-/-) mice through endoplasmic reticulum stress-mediated CD36 up-regulation in macrophage. Part Fibre Toxicol. 17, 50. https://doi.org/10.1186/s12989-020-00380-0 (2020).

    Google Scholar 

  76. Gibb, A. A., Lazaropoulos, M. P. & Elrod, J. W. Myofibroblasts and fibrosis: Mitochondrial and metabolic control of cellular differentiation. Circ. Res. 127, 427–447. https://doi.org/10.1161/CIRCRESAHA.120.316958 (2020).

    Google Scholar 

  77. Zhang, Y. et al. Coal dust nanoparticles induced pulmonary fibrosis by promoting inflammation and epithelial–mesenchymal transition via the NF-kappaB/NLRP3 pathway driven by IGF1/ROS-mediated AKT/GSK3beta signals. Cell Death Discov. 8, 500. https://doi.org/10.1038/s41420-022-01291-z (2022).

    Google Scholar 

  78. Zhang, G. et al. Titanium nanoparticles released from orthopedic implants induce muscle fibrosis via activation of SNAI2. J. Nanobiotechnol. 22, 522. https://doi.org/10.1186/s12951-024-02762-4 (2024).

    Google Scholar 

  79. Giacalone, V. D., Margaroli, C., Mall, M. A. & Tirouvanziam, R. Neutrophil adaptations upon recruitment to the lung: new concepts and implications for homeostasis and disease. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21030851 (2020).

  80. Kessenbrock, K., Dau, T. & Jenne, D. E. Tailor-made inflammation: how neutrophil serine proteases modulate the inflammatory response. J. Mol. Med. (Berl) 89, 23–28. https://doi.org/10.1007/s00109-010-0677-3 (2011).

    Google Scholar 

  81. Veenith, T. et al. High generation of reactive oxygen species from neutrophils in patients with severe COVID-19. Sci. Rep. 12, 10484. https://doi.org/10.1038/s41598-022-13825-7 (2022).

    Google Scholar 

  82. Nguyen, G. T., Green, E. R. & Mecsas, J. Neutrophils to the ROScue: Mechanisms of NADPH oxidase activation and bacterial resistance. Front. Cell Infect. Microbiol. 7, 373. https://doi.org/10.3389/fcimb.2017.00373 (2017).

    Google Scholar 

  83. Larosa, D. F. & Orange, J. S. 1. Lymphocytes. J Allergy Clin Immunol 121, S364–369; quiz S412, https://doi.org/10.1016/j.jaci.2007.06.016 (2008).

  84. Ott, L. W. et al. Tumor necrosis factor-alpha- and interleukin-1-induced cellular responses: coupling proteomic and genomic information. J. Proteome Res. 6, 2176–2185. https://doi.org/10.1021/pr060665l (2007).

    Google Scholar 

  85. Dinarello, C. A. Proinflammatory cytokines. Chest 118, 503–508. https://doi.org/10.1378/chest.118.2.503 (2000).

    Google Scholar 

  86. Kwon, H.-J. et al. Tumor necrosis factor alpha induction of NF-κB requires the novel coactivator SIMPL. Mol. Cell. Biol. 24, 9317–9326. https://doi.org/10.1128/MCB.24.21.9317-9326.2004 (2004).

    Google Scholar 

  87. Vig, E. et al. SIMPL is a tumor necrosis factor-specific regulator of nuclear factor-κB activity *. J. Biol. Chem. 276, 7859–7866. https://doi.org/10.1074/jbc.M010399200 (2001).

    Google Scholar 

  88. Vig, E. et al. Modulation of tumor necrosis factor and interleukin-1-dependent NF-κB activity by mPLK/IRAK *. J. Biol. Chem. 274, 13077–13084. https://doi.org/10.1074/jbc.274.19.13077 (1999).

    Google Scholar 

  89. Tosato, G. & Jones, K. D. Interleukin-1 induces interleukin-6 production in peripheral blood monocytes. Blood 75, 1305–1310 (1990).

    Google Scholar 

  90. Confalone, E., D’Alessio, G. & Furia, A. IL-6 induction by TNFα and IL-1β in an osteoblast-like cell line. Int. J. Biomed. Sci. 6, 135–140 (2010).

    Google Scholar 

  91. Wang, Z. Y. & Bjorling, D. E. Tumor necrosis factor-α induces expression and release of interleukin-6 by human urothelial cells. Inflamm. Res. 60, 525–532. https://doi.org/10.1007/s00011-010-0298-x (2011).

    Google Scholar 

  92. Angelovich, T. A., Hearps, A. C. & Jaworowski, A. Inflammation-induced foam cell formation in chronic inflammatory disease. Immunol. Cell Biol. 93, 683–693. https://doi.org/10.1038/icb.2015.26 (2015).

    Google Scholar 

  93. Guerrini, V. & Gennaro, M. L. Foam cells: One size doesn’t fit all. Trends Immunol. 40, 1163–1179. https://doi.org/10.1016/j.it.2019.10.002 (2019).

    Google Scholar 

  94. Zhang, H. Y., Gharaee-Kermani, M., Zhang, K., Karmiol, S. & Phan, S. H. Lung fibroblast alpha-smooth muscle actin expression and contractile phenotype in bleomycin-induced pulmonary fibrosis. Am. J. Pathol. 148, 527–537 (1996).

    Google Scholar 

  95. Mei, Q., Liu, Z., Zuo, H., Yang, Z. & Qu, J. Idiopathic pulmonary fibrosis: an update on pathogenesis. Front. Pharmacol. 12, 797292. https://doi.org/10.3389/fphar.2021.797292 (2021).

    Google Scholar 

  96. Degryse, A. L. & Lawson, W. E. Progress toward improving animal models for idiopathic pulmonary fibrosis. Am. J. Med. Sci. 341, 444–449. https://doi.org/10.1097/MAJ.0b013e31821aa000 (2011).

    Google Scholar 

  97. Borthwick, L. A. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin. Immunopathol. 38, 517–534. https://doi.org/10.1007/s00281-016-0559-z (2016).

    Google Scholar 

  98. Newby, A. & Thomas, A. Foam cell formation in vivo is pro-fibrotic. Atherosclerosis 241, e81–e82. https://doi.org/10.1016/j.atherosclerosis.2015.04.286 (2015).

    Google Scholar 

  99. Choudhury, A. et al. Atmospheric microplastic and nanoplastic: The toxicological paradigm on the cellular system. Ecotoxicol. Environ. Saf. 259, 115018. https://doi.org/10.1016/j.ecoenv.2023.115018 (2023).

    Google Scholar 

  100. Luo, D. et al. Micro- and nano-plastics in the atmosphere: A review of occurrence, properties and human health risks. J. Hazard. Mater. 465, 133412. https://doi.org/10.1016/j.jhazmat.2023.133412 (2024).

    Google Scholar 

Download references