References
-
Lesage, G. & Bussey, H. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70, 317–343 (2006).
-
Gemmill, T. R. & Trimble, R. B. Overview of N– and O-linked oligosaccharide structures found in various yeast species. Biochim. Biophys. Acta 1426, 227–237 (1999).
-
Loibl, M. & Strahl, S. Protein O-mannosylation: what we have learned from baker’s yeast. Biochim. Biophys. Acta 1833, 2438–2446 (2013).
-
Abbott, D. W., Martens, E. C., Gilbert, H. J., Cuskin, F. & Lowe, E. C. Coevolution of yeast mannan digestion: convergence of the civilized human diet, distal gut microbiome, and host immunity. Gut Microbes 6, 334–339 (2015).
-
Orlean, P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192, 775–818 (2012).
-
Herscovics, A. & Orlean, P. Glycoprotein biosynthesis in yeast. FASEB J. 7, 540–550 (1993).
-
Ballou, C. Structure and biosynthesis of the mannan component of the yeast cell envelope. Adv. Microb. Physiol. 14, 93–158 (1976).
-
Katafuchi, Y. et al. GfsA is a β1,5-galactofuranosyltransferase involved in the biosynthesis of the galactofuran side chain of fungal-type galactomannan in Aspergillus fumigatus. Glycobiology 27, 568–581 (2017).
-
Fontaine, T. & Latgé, J. P. Galactomannan produced by Aspergillus fumigatus: an update on the structure, biosynthesis and biological functions of an emblematic fungal biomarker. J. Fungi (Basel) 6, 283 (2020).
-
Latge, J. P. Galactofuranose containing molecules in Aspergillus fumigatus. Med. Mycol. 47(Supplement 1), S104–S109 (2009).
-
Kudoh, A., Okawa, Y. & Shibata, N. Significant structural change in both O– and N-linked carbohydrate moieties of the antigenic galactomannan from Aspergillus fumigatus grown under different culture conditions. Glycobiology 25, 74–87 (2015).
-
Latgé, J. P. Cell wall of Aspergillus fumigatus: variability and response to stress. Fungal Biol. 127, 1259–1266 (2023).
-
Kadooka, C., Tanaka, Y., Kishida, R., Hira, D. & Oka, T. Discovery of α-(1→6)-linked mannan structures resembling yeast N-glycan outer chains in Aspergillus fumigatus mycelium. mSphere 9, e0010024 (2024).
-
Oka, T., Hamaguchi, T., Sameshima, Y., Goto, M. & Furukawa, K. Molecular characterization of protein O-mannosyltransferase and its involvement in cell-wall synthesis in Aspergillus nidulans. Microbiol. (Reading) 150, 1973–1982 (2004).
-
Goto, M. et al. Protein O-mannosyltransferases B and C support hyphal development and differentiation in Aspergillus nidulans. Eukaryot. Cell 8, 1465–1474 (2009).
-
Hall, R. A. & Gow, N. A. R. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol. Microbiol. 90, 1147–1161 (2013).
-
Saijo, S. et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32, 681–691 (2010).
-
Vendele, I. et al. Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. PLOS Pathog. 16, e1007927 (2020).
-
Kadooka, C. et al. Identification of galactofuranose antigens such as galactomannoproteins and fungal-type galactomannan from the yellow koji fungus (Aspergillus oryzae). Front. Microbiol. 14, 1110996 (2023).
-
Saijo, S. & Iwakura, Y. Dectin-1 and Dectin-2 in innate immunity against fungi. Int. Immunol. 23, 467–472 (2011).
-
Drula, E. et al. The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Res. 50, 571–577 (2022).
-
Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).
-
Hakki, Z. et al. Structural and kinetic dissection of the endo-α-1,2-mannanase activity of bacterial GH99 glycoside hydrolases from Bacteroides spp. Chem. – A Euro. J. 21, 1966–1977 (2015).
-
Solanki, V. et al. Glycoside hydrolase from the GH76 family indicates that marine Salegentibacter sp. Hel_I_6 consumes alpha-mannan from fungi. ISME J. 16, 1818–1830 (2022).
-
Maddi, A., Fu, C. & Free, S. J. The Neurospora crassa dfg5 and dcw1 genes encode α-1,6-mannanases that function in the incorporation of glycoproteins into the cell wall. PLOS One 7, e38872 (2012).
-
Kitagaki, H., Wu, H., Shimoi, H. & Ito, K. Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae. Mol. Microbiol. 46, 1011–1022 (2002).
-
Kitagaki, H., Ito, K. & Shimoi, H. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls. Eukaryot. Cell 3, 1297–1306 (2004).
-
Spreghini, E., Davis, D. A., Subaran, R., Kim, M. & Mitchell, A. P. Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. Eukaryot. Cell 2, 746–755 (2003).
-
Razmi, M. et al. Candida albicans mannosidases, Dfg5 and Dcw1, are required for cell wall integrity and pathogenesis. J. Fungi (Basel) 10, 525 (2025).
-
Zhu, Y. et al. Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont. Nat. Chem. Biol. 6, 125–132 (2010).
-
Thompson, A. J. et al. Bacteroides thetaiotaomicron generates diverse α-mannosidase activities through subtle evolution of a distal substrate-binding motif. Acta Crystallogr. D Struct. Biol. 74, 394–404 (2018).
-
Kołaczkowski, B. M. et al. Structural and functional characterization of a multi-domain GH92 α-1,2-mannosidase from Neobacillus novalis. Acta Crystallogr. D Struct. Biol. 79, 387–400 (2023).
-
Crouch, L. I. et al. Plant N-glycan breakdown by human gut Bacteroides. Proc. Natl Acad. Sci. U. S. A. 119 e2208168119 (2022).
-
Crouch, L. I. N-glycan breakdown by bacterial CAZymes. Essays Biochem. 67, 373–385 (2023).
-
Kołaczkowski, B. M. et al. Analysis of fungal high-mannose structures using CAZymes. Glycobiology 32, 304–313 (2022).
-
Li, Y. et al. Enterococcus faecalis α1-2-mannosidase (EfMan-I): An efficient catalyst for glycoprotein N-glycan modification. FEBS Lett. 594, 439–451 (2020).
-
Alonso-Gil, S., Parkan, K., Kaminský, J., Pohl, R. & Miyazaki, T. Unlocking the hydrolytic mechanism of GH92 α-1,2-mannosidases: Computation inspires the use of C-glycosides as Michaelis complex mimics. Chemistry 28, e202200148 (2022).
-
Sagiroglugil, M. & Yasar, F. Catalytic reaction mechanism of bacterial GH92 α-1,2-mannosidase: A QM/MM metadynamics study. Chemphyschem 24, e202300628 (2023).
-
Shimizu, M. et al. Novel β-1,4-mannanase belonging to a new glycoside hydrolase family in Aspergillus nidulans. J. Biol. Chem. 290, 27914–27927 (2015).
-
Sakai, K. et al. Biochemical characterization of thermostable β-1,4-mannanase belonging to the glycoside hydrolase family 134 from Aspergillus oryzae in Appl. Microbiol. Biotechnol. 101, 3237–3245 (2017).
-
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
-
Robb, M. et al. Molecular characterization of N-glycan degradation and transport in Streptococcus pneumoniae and its contribution to virulence. PLOS Pathog. 13, e1006090 (2017).
-
Schimpl, M., Borodkin, V. S., Gray, L. J. & van Aalten, D. M. F. Synergy of peptide and sugar in O-GlcNAcase substrate recognition. Chem. Biol. 19, 173–178 (2012).
-
Thomson, L. M., Fontaine, T., Mehlert, A. & Ferguson, M. A. J. Glycosylphosphatidylinositol anchors in chemical probes in biology: Science at the interface of chemistry biology and medicine. In Springer (ed. Schneider, M. P.) 227–233 (Netherlands, 2003).
-
de Vries, R. P. et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 18, 28 (2017).
-
Etxebeste, O., Garzia, A., Espeso, E. A. & Ugalde, U. Aspergillus nidulans asexual development: Making the most of cellular modules. Trends Microbiol. 18, 569–576 (2010).
-
Wieser, J., Lee, B. N., Fondon, J. W. 3rd. & Adams, T. H. Genetic requirements for initiating asexual development in Aspergillus nidulans. Curr. Genet. 27, 62–69 (1994).
-
Lee, B. N. & Adams, T. H. Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol. Microbiol. 14, 323–334 (1994).
-
van Munster, J. M. et al. Systems approaches to predict the functions of glycoside hydrolases during the life cycle of Aspergillus niger using developmental mutants ∆brlA and ∆flbA. PLOS One 10, e0116269 (2015).
-
Asbury, R. E. & Saville, B. A. Manno-oligosaccharides as a promising antimicrobial strategy: Pathogen inhibition and synergistic effects with antibiotics. Front. Microbiol. 16, 1529081 (2025).
-
Kazlauskaite, R. et al. Deploying an in vitro gut model to assay the impact of the mannan-oligosaccharide prebiotic bio-mos on the Atlantic salmon (Salmo salar) gut microbiome. Microbiol. Spectr. 10, e0195321 (2022).
-
Gupta, S. et al. The need for high-resolution gut microbiome characterization to design efficient strategies for sustainable aquaculture production. Commun. Biol. 7, 1391 (2024).
