Integration of multi-modal monitoring for dynamic control of large-scale 3D tissue bioreactors

integration-of-multi-modal-monitoring-for-dynamic-control-of-large-scale-3d-tissue-bioreactors
Integration of multi-modal monitoring for dynamic control of large-scale 3D tissue bioreactors

References

  1. Pourchet, L. et al. Large 3D bioprinted tissue: heterogeneous perfusion and vascularization. Bioprinting 13, e00039 (2019).

    Google Scholar 

  2. Marquette, C. A. et al. Unlocking the potential of bio-inspired bioinks: A collective breakthrough in mammalian tissue Bioprinting. Bioprinting 41, e00351 (2024).

    Google Scholar 

  3. Li, H. et al. Digital light processing (DLP)-based (bio)printing strategies for tissue modeling and regeneration. Aggregate 4, e270 (2023).

    Google Scholar 

  4. Li, W. et al. Stereolithography apparatus and digital light processing-based 3D Bioprinting for tissue fabrication. iScience 26, 106039 (2023).

    Google Scholar 

  5. Bernal, P. N. et al. Volumetric Bioprinting of complex Living-Tissue constructs within seconds. Adv. Mater. 31, 1904209 (2019).

    Google Scholar 

  6. Zhang, Y. S. et al. 3D extrusion Bioprinting. Nat. Reviews Methods Primers. 1, 75 (2021).

    Google Scholar 

  7. Duarte, C. D. F. et al. Synchronized dual Bioprinting of Bioinks and biomaterial inks as a translational strategy for cartilage tissue engineering. 3d Print. Addit. Manuf. 6, 63–71 (2019).

    Google Scholar 

  8. Ali, A. S. M. et al. 3D Bioprinting of liver models: A systematic scoping review of methods, bioinks, and reporting quality. Mater. Today Bio. 26, 100991 (2024).

    Google Scholar 

  9. Fang, Y. et al. 3D printing of vascularized hepatic tissues with a high cell density and heterogeneous microenvironment. Biofabrication (2023).

  10. Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019).

    Google Scholar 

  11. Lee, S. J., Jeong, W. & Atala, A. 3D Bioprinting for engineered tissue constructs and Patient-Specific models: current progress and prospects in clinical applications. Adv. Mater. 36, 2408032 (2024).

    Google Scholar 

  12. Edri, S. et al. 3D Bioprinting of multicellular stem cell-Derived constructs to model pancreatic cell differentiation. Adv. Func Mater. 34, 2315488 (2024).

    Google Scholar 

  13. Scognamiglio, C., Soloperto, A., Ruocco, G. & Cidonio, G. Bioprinting stem cells: Building physiological tissues one cell at a time. Am. J. Physiology-Cell Physiol. 319, C465–C480 (2020).

    Google Scholar 

  14. Leferink, A. M., van Blitterswijk, C. A. & Moroni, L. Methods of monitoring cell fate and tissue growth in Three-Dimensional Scaffold-Based strategies for in vitro tissue engineering. Tissue Eng. Part. B: Reviews. 22, 265–283 (2016).

    Google Scholar 

  15. Mather, M. L., Morgan, S. P. & Crowe, J. A. Meeting the needs of monitoring in tissue engineering. Regen. Med. 2, 145–160 (2007).

    Google Scholar 

  16. Eshmuminov, D. et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat. Biotechnol. 38, 189–198 (2020).

    Google Scholar 

  17. Kotecha, M. in Magn. Reson. Imaging Tissue Eng. 21–47 (2017).

  18. Gil, C. J. et al. Leveraging 3D Bioprinting and Photon-Counting computed tomography to enable noninvasive quantitative tracking of multifunctional tissue engineered constructs. Adv. Healthc. Mater. 12, e2302271 (2023).

    Google Scholar 

  19. Zoneff, E. et al. Controlled oxygen delivery to power tissue regeneration. Nat. Commun. 15, 4361 (2024).

    Google Scholar 

  20. Place, T. L., Domann, F. E. & Case, A. J. Limitations of oxygen delivery to cells in culture: an underappreciated problem in basic and translational research. Free Radic. Biol. Med. 113, 311–322 (2017).

    Google Scholar 

  21. Wagner, B. A., Venkataraman, S. & Buettner, G. R. The rate of oxygen utilization by cells. Free Radic Biol. Med. 51, 700–712 (2011).

    Google Scholar 

  22. Magliaro, C. et al. Oxygen consumption characteristics in 3D constructs depend on cell density. Front. Bioeng. Biotechnol. 7–2019 (2019).

  23. Chastagnier, L. et al. Deciphering dermal fibroblast behavior in 3D bioprinted dermis constructs. Bioprinting 32, e00275 (2023).

    Google Scholar 

  24. Harcum, S. W. et al. PID controls: the forgotten bioprocess parameters. Discover Chem. Eng. 2, 1 (2022).

    Google Scholar 

  25. Jones, J. et al. Improved control strategies for the environment within cell culture bioreactors. Food Bioprod. Process. 138, 209–220 (2023).

    Google Scholar 

  26. Izadifar, Z. et al. Organ chips with integrated multifunctional sensors enable continuous metabolic monitoring at controlled oxygen levels. Biosens. Bioelectron. 265, 116683 (2024).

    Google Scholar 

  27. Chen, Y. et al. Characterization and optimization of cell seeding in scaffolds by factorial design: quality by design approach for skeletal tissue engineering. Tissue Eng. Part. C Methods. 17, 1211–1221 (2011).

    Google Scholar 

  28. Martinez-Marquez, D., Mirnajafizadeh, A., Carty, C. P. & Stewart, R. A. Application of quality by design for 3D printed bone prostheses and scaffolds. PLOS ONE. 13, e0195291 (2018).

    Google Scholar 

  29. Papantoniou, I., Chai, Y. C., Luyten, F. P. & Schrooten, J. Process quality engineering for Bioreactor-Driven manufacturing of Tissue-Engineered constructs for bone regeneration. Tissue Eng. Part. C: Methods. 19, 596–609 (2012).

    Google Scholar 

  30. Yao, S. et al. Role of lactate and lactate metabolism in liver diseases (Review). Int. J. Mol. Med. 54, 59 (2024).

    Google Scholar 

  31. Boubriak, O. A., Urban, J. P. & Cui, Z. Monitoring of metabolite gradients in tissue-engineered constructs. J. R. Soc. Interface. 3, 637–648 (2006).

    Google Scholar 

  32. Lagarde, D. et al. Lactate fluxes and plasticity of adipose tissues: A redox perspective. Frontiers Physiology 12–2021 (2021).

  33. Whelan, J., Craven, S. & Glennon, B. In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors. Biotechnol. Prog. 28, 1355–1362 (2012).

    Google Scholar 

  34. Bhatia, H., Mehdizadeh, H., Drapeau, D. & Yoon, S. In-line monitoring of amino acids in mammalian cell cultures using Raman spectroscopy and multivariate chemometrics models. Eng. Life Sci. 18, 55–61 (2017).

    Google Scholar 

  35. Ntziouni, A. et al. Review of existing Standards, Guides, and practices for Raman spectroscopy. Appl. Spectrosc. 76, 000370282210909 (2022).

    Google Scholar 

  36. Zhang, Z., Lang, Z., Chen, G., Zhou, H. & Zhou, W. Development of generic metabolic Raman calibration models using solution Titration in aqueous phase and data augmentation for in-line cell culture analysis. Biotechnol. Bioeng. 121, 2193–2204 (2024).

    Google Scholar 

  37. Rafferty, C. et al. Analysis of chemometric models applied to Raman spectroscopy for monitoring key metabolites of cell culture. Biotechnol. Prog. 36, e2977 (2020).

    Google Scholar 

  38. Rubini, M. et al. Monitoring of Nutrients, Metabolites, IgG Titer, and cell densities in 10 L bioreactors using Raman spectroscopy and PLS regression models. Pharmaceutics 17 (2025).

  39. Urciuolo, F., Imparato, G. & Netti, P. A. In vitro strategies for mimicking dynamic cell–ECM reciprocity in 3D culture models. Frontiers Bioeng. Biotechnology Volume 11–2023 (2023).

  40. Yi, J. H., Stoffel, M., Weichert, D., Rath, B. & Markert, B. Remodeling of soft tissues due to cell activity. PAMM 14 (2014).

  41. Andilla, J. et al. Imaging tissue-mimic with light sheet microscopy: A comparative guideline. Sci. Rep. 7, 44939 (2017).

    Google Scholar 

  42. Matcher, S. J. Practical aspects of OCT imaging in tissue engineering. Methods Mol. Biol. 695, 261–280 (2011).

    Google Scholar 

  43. Hahn, A. & Kurz, F. T. in In Tissue Engineering Using Ceramics and Polymers. 281–343 (eds (Third Edition, A. R., Boccaccini, P. X., Ma & Liverani, L.) (Woodhead Publishing, 2022).

  44. Xu, H., Othman, S. F. & Magin, R. L. Monitoring tissue engineering using magnetic resonance imaging. J. Biosci. Bioeng. 106, 515–527 (2008).

    Google Scholar 

  45. Guida, L., Cavallaro, M. & Levi, M. Advancements in high-resolution 3D bioprinting: exploring technological trends, Bioinks and achieved resolutions. Bioprinting 44, e00376 (2024).

    Google Scholar 

  46. Bland, E., Dréau, D. & Burg, K. J. L. Overcoming hypoxia to improve tissue-engineering approaches to regenerative medicine. J. Tissue Eng. Regen M. 7, 505–514 (2013).

    Google Scholar 

  47. Ricke, A., Sadeghi, M. & Dreher, W. Magnetic resonance velocimetry for porous media: sources and reduction of measurement errors for improved accuracy. Exp. Fluids. 64, 132 (2023).

    Google Scholar 

  48. McCabe, A., Martin, S., Shah, J., Morgan, P. S. & Panek, R. T(1) based oxygen-enhanced MRI in tumours; a scoping review of current research. Br. J. Radiol. 96, 20220624 (2023).

    Google Scholar 

  49. Liu, Z. et al. A robust collagen-targeting MRI peptide contrast agent for in vivo imaging of hepatic fibrosis. Chem. Comm. 59, 6068–6071 (2023).

    Google Scholar 

  50. Biondetti, E., Cho, J. & Lee, H. Cerebral oxygen metabolism from MRI susceptibility. Neuroimage 276, 120189 (2023).

    Google Scholar 

  51. Harris, R. J. et al. Simultaneous pH-sensitive and oxygen-sensitive MRI of human gliomas at 3 T using multi-echo amine proton chemical exchange saturation transfer spin-and-gradient echo echo-planar imaging (CEST-SAGE-EPI). Magn. Reson. Med. 80, 1962–1978 (2018).

    Google Scholar 

  52. Gimenez, Y. et al. 3D imaging of nanoparticle distribution in biological tissue by Laser-Induced breakdown spectroscopy. Sci. Rep. 6, 29936 (2016).

    Google Scholar 

Download references