Computational design of dynamic biosensors for emerging synthetic opioids

computational-design-of-dynamic-biosensors-for-emerging-synthetic-opioids
Computational design of dynamic biosensors for emerging synthetic opioids

Data availability

Raw deep sequencing data are deposited in the SRA (BioProject ID PRJNA1256820), and analyzed deep sequencing data are on Zenodo (https://doi.org/10.5281/zenodo.15298584)68. PDB ID of structure used for structural replacement code: 3QN1 All other data are available in the main text or the supplementary materials. Source Data are provided with this paper as “Source Data.xlsx”. Primers, plasmids, and synthetic DNA fragments used in this paper are provided as Supplementary Data 13, respectively. Source data are provided with this paper.

Code availability

An automated protocol for the TREMD conformer generation protocol is available on GitHub https://github.com/ajfriedman22/SM_ConfGen. PyRosetta scripts for biosensor design by structural replacement are available at https://github.com/alisoncleonard/Structural-Replacement-Biosensor-Design. Scripts used to generate Supplementary Figs. 1 and 10 and to process raw deep sequencing data are available at https://github.com/WhiteheadGroup/Leonard_ComputationalDesign_Supplemental69.

References

  1. National Institute on Drug Abuse. Drug overdose deaths: facts and figures. Natl. Inst. Drug Abuse. https://nida.nih.gov/research-topics/trends-statistics/overdose-death-rates (2024).

  2. Opioid overdose. https://www.who.int/news-room/fact-sheets/detail/opioid-overdose (2025).

  3. Prekupec, M. P., Mansky, P. A. & Baumann, M. H. Misuse of novel synthetic opioids: a deadly new trend. J. Addict. Med. 11, 256–265 (2017).

    Google Scholar 

  4. CDC. Fentanyl facts. Stop Overdose. https://www.cdc.gov/stop-overdose/caring/fentanyl-facts.html (2024).

  5. New, Dangerous Synthetic Opioid in D.C., Emerging in Tri-State Area. DEA. https://www.dea.gov/stories/2022/2022-06/2022-06-01/new-dangerous-synthetic-opioid-dc-emerging-tri-state-area (2022).

  6. CCENDU Drug Alert: Nitazenes. (Canadian Centre on Substance Use and Addiction, 2022).

  7. De Vrieze, L. M. et al. In vitro structure-activity relationships and forensic case series of emerging 2-benzylbenzimidazole ‘nitazene’ opioids. Arch. Toxicol. 98, 2999–3018 (2024).

    Google Scholar 

  8. Holland, A. et al. Nitazenes-heralding a second wave for the UK drug-related death crisis? Lancet Public Health 9, e71–e72 (2024).

    Google Scholar 

  9. Krausz, R. M. et al. Shifting North American drug markets and challenges for the system of care. Int. J. Ment. Health Syst. 15, 86 (2021).

    Google Scholar 

  10. Uljon, S. Advances in fentanyl testing. Adv. Clin. Chem. 116, 1–30 (2023).

    Google Scholar 

  11. Krieger, M. S. et al. Use of rapid fentanyl test strips among young adults who use drugs. Int. J. Drug Policy 61, 52–58 (2018).

    Google Scholar 

  12. Lieberman, M., Badea, A., Desnoyers, C., Hayes, K. & Park, J. N. An urgent need for community lot testing of lateral flow fentanyl test strips marketed for harm reduction in Northern America. Harm. Reduct. J. 21, 115 (2024).

    Google Scholar 

  13. Green, H. H. New class of opioids that may be more potent than fentanyl emerges globally. The Guardian. https://www.theguardian.com/us-news/2024/sep/25/opioid-crisis-nitazenes-fentanyl (2024).

  14. Steiner, P. J. et al. A closed form model for molecular ratchet-type chemically induced dimerization modules. Biochemistry 62, 281–291 (2023).

    Google Scholar 

  15. Ziegler, M. J. et al. Mandipropamid as a chemical inducer of proximity for in vivo applications. Nat. Chem. Biol. 18, 64–69 (2021).

    Google Scholar 

  16. Park, S. Y. et al. Agrochemical control of plant water use using engineered abscisic acid receptors. Nature 520, 545–548 (2015).

    Google Scholar 

  17. Melcher, K. et al. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 462, 602–608 (2009).

    Google Scholar 

  18. Beltrán, J. et al. Rapid biosensor development using plant hormone receptors as reprogrammable scaffolds. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01364-5 (2022).

  19. Park, S.-Y. et al. An orthogonalized PYR1-based CID module with reprogrammable ligand-binding specificity. Nat. Chem. Biol. 20, 103–110 (2024).

    Google Scholar 

  20. Leonard, A. C. & Whitehead, T. A. Design and engineering of genetically encoded protein biosensors for small molecules. Curr. Opin. Biotechnol. 78, 102787 (2022).

    Google Scholar 

  21. Kalogriopoulos, N. A. et al. Synthetic GPCRs for programmable sensing and control of cell behaviour. Nature 637, 230–239 (2024).

    Google Scholar 

  22. An, L. et al. Binding and sensing diverse small molecules using shape-complementary pseudocycles. Science 385, 276–282 (2024).

    Google Scholar 

  23. Lee, G. R. et al. Small-molecule binding and sensing with a designed protein family. bioRxiv. https://doi.org/10.1101/2023.11.01.565201 (2023).

  24. Bick, M. J. et al. Computational design of environmental sensors for the potent opioid fentanyl. Elife 6, e28909 (2017).

  25. Polizzi, N. F. & DeGrado, W. F. A defined structural unit enables de novo design of small-molecule-binding proteins. Science 369, 1227–1233 (2020).

    Google Scholar 

  26. Marchand, A. et al. Targeting protein–ligand neosurfaces with a generalizable deep learning tool. Nature 1, 10 (2025).

    Google Scholar 

  27. Glasgow, A. et al. Ligand-specific changes in conformational flexibility mediate long-range allostery in the lac repressor. Nat. Commun. 14, 1179 (2023).

    Google Scholar 

  28. Shover, C. L., Falasinnu, T. O., Freedman, R. B. & Humphreys, K. Emerging characteristics of isotonitazene-involved overdose deaths: a case-control study: a case-control study. J. Addict. Med. 15, 429–431 (2021).

    Google Scholar 

  29. Taoussi, O. et al. Human metabolism of four synthetic benzimidazole opioids: isotonitazene, metonitazene, etodesnitazene, and metodesnitazene. Arch. Toxicol. 98, 2101–2116 (2024).

    Google Scholar 

  30. Kanamori, T. et al. Metabolism of highly potent synthetic opioid nitazene analogs: N-ethyl-N-(1-glucuronyloxyethyl) metabolite formation and degradation to N-desethyl metabolites during enzymatic hydrolysis. Drug Test. Anal. https://doi.org/10.1002/dta.3705 (2024).

  31. Walton, S. E., Krotulski, A. J. & Logan, B. K. A forward-thinking approach to addressing the new synthetic opioid 2-benzylbenzimidazole nitazene analogs by liquid chromatography-tandem quadrupole mass spectrometry (LC-QQQ-MS). J. Anal. Toxicol. 46, 221–231 (2022).

    Google Scholar 

  32. Maguire, J. B. et al. Perturbing the energy landscape for improved packing during computational protein design. Proteins 89, 436–449 (2021).

    Google Scholar 

  33. Robertson, N. R. et al. PYR1 biosensor-driven genome-wide CRISPR screens for improved monoterpenoid production in Kluyveromyces marxianus. bioRxiv 11, 623641 (2024).

    Google Scholar 

  34. Park, S.-Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071. https://doi.org/10.1126/science.1173041 (2009).

  35. Vaidya, A. S. et al. Click-to-lead design of a picomolar ABA receptor antagonist with potent activity in vivo. Proc. Natl. Acad. Sci. USA 118, e2108281118 (2021).

  36. Daffern, N., Francino-Urdaniz, I. M., Baumer, Z. T. & Whitehead, T. A. Standardizing cassette-based deep mutagenesis by Golden Gate assembly. Biotechnol. Bioeng. 121, 281–290 (2024).

    Google Scholar 

  37. Daffern, N. et al. GMMA can stabilize proteins across different functional constraints. J. Mol. Biol. 436, 168586 (2024).

    Google Scholar 

  38. Dixon, A. S. et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016).

    Google Scholar 

  39. Gagnot, G. et al. Core-modified coelenterazine luciferin analogues: synthesis and chemiluminescence properties. Chemistry 27, 2112–2123 (2021).

    Google Scholar 

  40. De Vrieze, L. M., Stove, C. P. & Vandeputte, M. M. Nitazene test strips: a laboratory evaluation. Harm. Reduct. J. 21, 159 (2024).

    Google Scholar 

  41. Dauparas, J. et al. Atomic context-conditioned protein sequence design using LigandMPNN. Nat. Methods 22, 717–723 (2025).

    Google Scholar 

  42. Kozel, T. R. & Burnham-Marusich, A. R. Point-of-care testing for infectious diseases: past, present, and future. J. Clin. Microbiol. 55, 2313–2320 (2017).

    Google Scholar 

  43. Ni, Y. et al. A plug-and-play platform of ratiometric bioluminescent sensors for homogeneous immunoassays. Nat. Commun. 12, 4586 (2021).

    Google Scholar 

  44. Socha, R. D. & Tokuriki, N. Modulating protein stability—directed evolution strategies for improved protein function. FEBS J. 280, 5582–5595 (2013).

    Google Scholar 

  45. Torres, S. V. et al. De novo designed proteins neutralize lethal snake venom toxins. Nature 639, 225–231 (2025).

    Google Scholar 

  46. Stove, C. New synthetic opioids: advances of receptor assays as tools for pharmacological characterization and analytical screening. Ann. Toxicol. Anal. 36, S18–S19 (2024).

    Google Scholar 

  47. Tian, H. et al. Unusually Broad-spectrum small-molecule sensing using a single protein scaffold. PNAS 122, e2519924122 (2025).

  48. Santiago, J. et al. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J. 60, 575–588 (2009).

    Google Scholar 

  49. Dupeux, F. et al. A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO J. 30, 4171–4184 (2011).

    Google Scholar 

  50. Santiago, J. et al. Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Sci. 182, 3–11 (2012).

    Google Scholar 

  51. Hao, Q. et al. The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Mol. Cell 42, 662–672 (2011).

    Google Scholar 

  52. Guo, A. B., Akpinaroglu, D., Kelly, M. J. S. & Kortemme, T. Deep learning guided design of dynamic proteins. Science 388, eadr7094 (2025).

  53. Ferrari, Á. J. R. et al. Large-scale discovery, analysis, and design of protein energy landscapes. bioRxivorg. https://doi.org/10.1101/2025.03.20.644235 (2025).

  54. Kim, S. et al. PubChem 2025 update. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae1059 (2024).

  55. Okumura, H., Gallicchio, E. & Levy, R. M. Conformational populations of ligand-sized molecules by replica exchange molecular dynamics and temperature reweighting. J. Comput. Chem. 31, 1357–1367 (2010).

    Google Scholar 

  56. Leonard, A. C. et al. Rationalizing diverse binding mechanisms to the same protein fold: Insights for ligand recognition and biosensor design. ACS Chem. Biol. 19, 1757–1772 (2024).

    Google Scholar 

  57. Dupeux, F. et al. Modulation of abscisic acid signaling in vivo by an engineered receptor-insensitive protein phosphatase type 2C allele. Plant Physiol. 156, 106–116 (2011).

    Google Scholar 

  58. Beltrán, J. et al. Rapid biosensor development using plant hormone receptors as reprogrammable scaffolds. Nat. Biotechnol. 40, 1855–1861 (2022).

    Google Scholar 

  59. Daffern, N., Francino-Urdaniz, I., Baumer, Z. T. & Whitehead, T. A. Benchmarking cassette-based deep mutagenesis by Golden Gate assembly. bioRxiv 04, 536781 (2023).

    Google Scholar 

  60. Medina-Cucurella, A. V. & Whitehead, T. A. Characterizing protein-protein interactions using deep sequencing coupled to yeast surface display. Methods Mol. Biol. 1764, 101–121 (2018).

    Google Scholar 

  61. Wrenbeck, E. E. et al. Plasmid-based one-pot saturation mutagenesis. Nat. Methods 13, 928–930 (2016).

  62. Mighell, T. L., Toledano, I. & Lehner, B. SUNi mutagenesis: scalable and uniform nicking for efficient generation of variant libraries. PLoS ONE 18, e0288158 (2023).

    Google Scholar 

  63. Lee, M. E., DeLoache, W. C., Cervantes, B. & Dueber, J. E. A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth. Biol. 4, 975–986 (2015).

    Google Scholar 

  64. Steiner, P. J., Bedewitz, M. A., Medina-Cucurella, A. V., Cutler, S. R. & Whitehead, T. A. A yeast surface display platform for plant hormone receptors: toward directed evolution of new biosensors. AIChE J. 66, e16767 (2020).

  65. Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Google Scholar 

  66. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954 (1967).

    Google Scholar 

  67. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Google Scholar 

  68. Leonard, A. C. et al. Computational design of dynamic biosensors for emerging synthetic opioids. https://doi.org/10.5281/zenodo.15298584 (2025).

  69. Leonard, A. C. et al. Computational design of dynamic biosensors for emerging synthetic opioids, Leonard_ComputationalDesign_2025_Supplemental. https://doi.org/10.5281/zenodo.17885439 (2025).

Download references

Acknowledgements

We would like to thank Yves Janin for kindly providing the luciferase prosubstrate, Hikarazine-108. ACL would like to thank the Interdisciplinary Quantitative Biology and Molecular Biophysics programs at the University of Colorado Boulder for ongoing support. TAW would like to thank M. Stammnitz for helpful discussions related to transduction mechanisms for ligand-dependent protein biosensors. Funding for this work was supported by: National Science Foundation NSF Award #2128287 (T.A.W.); National Science Foundation NSF Award #2128016 (S.R.C. and I.W.); National Science Foundation NRT Integrated Data Science Fellowship Award #2022138 (L.M.W.); NSF GRFP Award #1650115 (A.C.L.); NSF GRFP Award #2040434 (Z.T.B.); DARPA CERES Award#D24AC00011-05 (S.R.C., I.W., and T.A.W.); NIH award# R01GM123296 (L.M.W. and A.J.F.); NIH award #5T32GM145437 (L.M.W.); DOE GAANN Awards # P200A210136 and P200A240099 (C.L.M.).

Author information

Author notes

  1. These authors contributed equally: Alison C. Leonard, Chase Lenert-Mondou, Rachel Chayer, Samuel Swift.

Authors and Affiliations

  1. Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA

    Alison C. Leonard, Rachel Chayer, Samuel Swift, Zachary T. Baumer, Ryan Delaney, Anika J. Friedman, Jordan Wells, Lindsey M. Whitmore, Michael R. Shirts & Timothy A. Whitehead

  2. Department of Biochemistry and Molecular Biology, University of California, Riverside, CA, USA

    Chase Lenert-Mondou

  3. Department of Bioengineering, University of California, Riverside, CA, USA

    Nicholas R. Robertson & Norman Seder

  4. Department of Botany and Plant Sciences, University of California, Riverside, CA, USA

    Sean R. Cutler

  5. Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA

    Ian Wheeldon

  6. Center for Industrial Biotechnology, University of California, Riverside, CA, USA

    Ian Wheeldon

Authors

  1. Alison C. Leonard
  2. Chase Lenert-Mondou
  3. Rachel Chayer
  4. Samuel Swift
  5. Zachary T. Baumer
  6. Ryan Delaney
  7. Anika J. Friedman
  8. Nicholas R. Robertson
  9. Norman Seder
  10. Jordan Wells
  11. Lindsey M. Whitmore
  12. Sean R. Cutler
  13. Michael R. Shirts
  14. Ian Wheeldon
  15. Timothy A. Whitehead

Contributions

Non co-1st author trainees are listed in alphabetical order. Conceptualization: A.C.L., C.L.M., N.R.R., I.W., and T.A.W. Methodology: A.C.L., C.L.M., R.C., S.S., R.D., A.J.F., M.R.S., I.W., and T.A.W. Investigation: A.C.L., C.L.M., R.C., S.S., Z.T.B., R.D., A.J.F., N.R.R., N.S., J.W., and L.M.W. Visualization: A.C.L., C.L.M., R.C., S.S., I.W., and A.W. Funding acquisition: A.C.L., Z.T.B., S.C., M.R.S., I.W., and T.A.W. Project administration: I.W. and T.A.W. Supervision: S.C., M.R.S., I.W., and T.A.W. Writing – original draft: A.C.L., C.L.M., R.C., S.S., I.W., and T.A.W. Writing – review & editing: S.C., M.R.S., I.W., and T.A.W.

Corresponding authors

Correspondence to Ian Wheeldon or Timothy A. Whitehead.

Ethics declarations

Competing interests

T.A.W., S.R.C., and I.W. have filed a provisional patent entitled REAGENTS AND SYSTEMS FOR GENERATING BIOSENSORS (US9738902B2; WO2011139798A2) covering some research in the present work. T.A.W. is a consultant for Inari Ag and serves on the scientific advisory board for Metaphore Biotechnologies and Alta Tech. S.R.C. and I.W. are cofounders of Living Sensors Inc., which has interests in sensing technologies. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Christophe Stove, who co-reviewed with Marthe M. Vandeputte, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonard, A.C., Lenert-Mondou, C., Chayer, R. et al. Computational design of dynamic biosensors for emerging synthetic opioids. Nat Commun (2026). https://doi.org/10.1038/s41467-025-67994-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67994-w