References
-
Vera, M. et al. Living at the edge: population differentiation in endangered Arnica Montana from NW Iberian Peninsula. Plant. Syst. Evol. 306, 1–14. https://doi.org/10.1007/s00606-020-01673-9 (2020).
-
Li, Y., Chen, F., Li, Z., Li, C. & Zhang, Y. Identification and functional characterization of sesquiterpene synthases from Xanthium strumarium. Plant. Cell. Physiol. 57, 630–641. https://doi.org/10.1093/pcp/pcw019 (2016).
-
Lyss, G., Schmidt, T. J., Merfort, I. & Pahl, H. L. Helenalin, an anti-inflammatory sesquiterpene lactone from Arnica, selectively inhibits transcription factor NF-kappaB. Biol. Chem. 378, 951–961. https://doi.org/10.1515/bchm.1997.378.9.951 (1997).
-
Kriplani, P., Guarve, K. & Baghael, U. S. Arnica Montana L.–a plant of healing. J. Pharm. Pharmacol. 69 (8), 925–945 (2017).
-
Greinwald, A. et al. Soil and vegetation drive sesquiterpene lactone content and profile in Arnica Montana L. Flower heads from Apuseni-Mountains, Romania. Front. Plant. Sci. 13, 813939. https://doi.org/10.3389/fpls.2022.813939 (2022).
-
Schmidt, T. J. Doesn’t origin matter? Plants 12, 3532. https://doi.org/10.3390/plants12203532 (2023). Arnica montana L.
-
Atanasov, A. G. et al. Discovery and resupply of Pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 33 (8), 1582–1614 (2015).
-
Petrova, M. et al. Antioxidant capacity and accumulation of caffeoylquinic acids in Arnica Montana L. in vitro shoots after elicitation with yeast extract or Salicylic acid. Plants 14 (6), 967 (2025).
-
Kohli, S. K. et al. Interaction of 24-epibrassinolide and Salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environ. Sci. Pollut Res. 25, 15159–15173. https://doi.org/10.1007/s11356-018-1742-7 (2018).
-
Halder, M., Sarkar, S., Jha, S. & Elicitation A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng. Life Sci. 19, 880–895. https://doi.org/10.1002/elsc.201900058 (2019).
-
Zhai, X. et al. The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants. Crit. Rev. Microbiol. 43, 238–261. https://doi.org/10.1080/1040841X.2016.1201041 (2016).
-
Perassolo, M., Cardillo, A. B., Busto, V. D., Giulietti, A. M. & Talou, J. R. Biosynthesis of sesquiterpene lactones in plants and metabolic engineering for their biotechnological production. In: (eds Sülsen, V. & Martino, V.) Sesquiterpene Lactones. Springer, Cham., DOI: https://doi.org/10.1007/978-3-319-78274-4_4 (2018).
-
Majdi, M., Abdollahi, M. R. & Maroufi, A. Parthenolide accumulation and expression of genes related to parthenolide biosynthesis affected by exogenous application of Methyl jasmonate and Salicylic acid in Tanacetum parthenium. Plant. Cell. Rep. 34, 1909–1918. https://doi.org/10.1007/s00299-015-1837-2 (2015).
-
Vranová, E., Coman, D. & Gruissem, W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant. Biol. 64, 665–700. https://doi.org/10.1146/annurev-arplant-050312-120116 (2013).
-
Parafiniuk, A. et al. Localization of sesquiterpene lactones biosynthesis in flowers of Arnica taxa. Molecules 28, 4379. https://doi.org/10.3390/molecules28114379 (2023).
-
de Kraker, J. W., Franssen, M. C., de Groot, A., König, W. A. & Bouwmeester, H. J. (+)-Germacrene A biosynthesis: the committed step in the biosynthesis of bitter sesquiterpene lactones in Chicory. Plant Physiol. 117, 1381–1392. https://doi.org/10.1104/pp.117.4.1381 (1998).
-
Bennett, M. H., Mansfield, J. W., Lewis, M. J. & Beale, M. H. Cloning and expression of sesquiterpene synthase genes from lettuce (Lactuca sativa L). Phytochem 60, 255–261. https://doi.org/10.1016/S0031-9422(02)00103-6 (2002).
-
Bertea, C. M. et al. Isoprenoid biosynthesis in Artemisia annua: cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. Arch. Biochem. Biophys. 448, 3–12. https://doi.org/10.1016/j.abb.2006.02.026 (2006).
-
Liu, Q. et al. Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway. Metab. Eng. 23, 145–153. https://doi.org/10.1016/j.ymben.2014.03.005 (2014).
-
Göpfert, J. C., MacNevin, G., Ro, D. K. & Spring, O. Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes. BMC Plant. Biol. 9 86 https://doi.org/10.1186/1471-2229-9-86 (2009).
-
Nguyen, T. D. et al. Discovery of germacrene A synthases in Barnadesia spinosa: the first committed step in sesquiterpene lactone biosynthesis in the basal member of the Asteraceae. Biochem. Biophys. Res. Commun. 479, 622–627. https://doi.org/10.1016/j.bbrc.2016.09.165 (2016).
-
Frey, M. et al. Sesquiterpene Lactones – Insights into Biosynthesis, regulation and signalling roles. Crit. Rev. Plant. Sci. 43, 131–157. https://doi.org/10.1080/07352689.2024.2307240 (2024).
-
Parafiniuk, A. et al. Impact of elicitors and light on biosynthesis of sesquiterpene lactones in tissue culture of Arnica Montana and its variety Arbo. Front. Plant. Sci. 16, 1611849. https://doi.org/10.3389/fpls.2025.1611849 (2025).
-
Perry, N. B. Sesquiterpene lactones in Arnica montana: Helenalin and Dihydrohelenalin chemotypes in Spain. Planta Med. 75, 660–666. https://doi.org/10.1055/s-0029-1185362 (2009).
-
Petrova, M., Zayova, E., Todorova, M. & Stanilova, M. Enhancement of Arnica Montana in vitro shoot multiplication and sesquiterpene lactones production using temporary immersion system. IJPSR 5, 5170–5176. https://doi.org/10.13040/IJPSR.0975-8232.5(12).5170-76 (2014).
-
Schmidt, T. J., Bomme, U. & Alfermann, A. W. Sesquiterpene lactone content in leaves of in vitro and field cultivated Arnica Montana. Planta Med. 64, 268–270. https://doi.org/10.1055/s-2006-957423 (1998).
-
Baldi, A. & Dixit, V. K. Yield enhancement strategies for Artemisinin production by suspension cultures of Artemisia annua. Bioresour Technol. 99 (11), 4609–4614. https://doi.org/10.1016/j.biortech.2007.06.061 (2008).
-
Putalun, W., Luealon, W., De-Eknamkul, W., Tanaka, H. & Shoyama, Y. Improvement of Artemisinin production by Chitosan in hairy root cultures of Artemisia annua L. Biotechnol. Lett. 29, 1143–1146. https://doi.org/10.1007/s10529-007-9368-8 (2007).
-
Patra, N., Srivastava, A. K. & Sharma, S. Study of various factors for enhancement of Artemisinin in Artemisia annua hairy roots. Int. J. Chem. Eng. Appl. 4, 157–160 (2013).
-
Pourianezhad, F. et al. Effects of combined elicitors on parthenolide production and expression of parthenolide synthase (TpPTS) in Tanacetum parthenium hairy root culture. Plant. Biotechnol. Rep. 13, 211–218. https://doi.org/10.1007/s11816-019-00526-3 (2019).
-
Malarz, J., Stojakowska, A. & Kisiel, W. Effect of Methyl jasmonate and Salicylic acid on sesquiterpene lactone accumulation in hairy roots of Cichorium intybus. Acta Physiol. Plant. 29, 127–132. https://doi.org/10.1007/s11738-006-0016-z (2007).
-
Laezza, C. et al. Use of yeast extract to elicit a pulp-derived callus cultures from Annurca Apple and potentiate its biological activity. J. Funct. Foods. 112, 105988. https://doi.org/10.1016/j.jff.2023.105988 (2024).
-
Petrova, M., Miladinova-Georgieva, K. & Geneva, M. Influence of abiotic and biotic elicitors on organogenesis, biomass accumulation, and production of key secondary metabolites in Asteraceae plants. Int. J. Mol. Sci. 25 (8), 4197. https://doi.org/10.3390/ijms25084197 (2024).
-
Li, D. et al. Impact of methyl jasmonate on terpenoid biosynthesis and functional analysis of sesquiterpene synthesis genes in Schizonepeta tenuifolia. Plants, 13, (1920). https://doi.org/10.3390/plants13141920 (2024).
-
Kwon, M. et al. Germacrene A synthases for sesquiterpene lactone biosynthesis are expressed in vascular parenchyma cells neighboring laticifers in lettuce. Plants 11 (9), 1192. https://doi.org/10.3390/plants11091192 (2022).
-
Li, C. et al. An independent biosynthetic route to frame a xanthanolide-type sesquiterpene lactone in Asteraceae. Plant J. 121 (2), e17199. https://doi.org/10.1111/tpj.17199 (2025).
-
Sozoniuk, M., Petrova, M., Mishev, K., Miladinova-Georgieva, K. & Geneva, M. Identification and validation of reference genes with stable expression under elicitor treatments of the medicinal plant Arnica Montana L. BMC Plant Biol. 25 (1), 546. https://doi.org/10.1186/s12870-025-06557-z (2025).
-
Lu, X., Tang, K. & Li, P. Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Front. Plant. Sci. 7, 1647. https://doi.org/10.3389/fpls.2016.01647 (2016).
-
Bansal, S. et al. HMG-CoA reductase from Camphor Tulsi (Ocimum kilimandscharicum) regulated MVA dependent biosynthesis of diverse terpenoids in homologous and heterologous plant systems. Sci. Rep. 8, 3547. https://doi.org/10.1038/s41598-017-17153-z (2018).
-
Wang, Q. J., Zheng, L. P., Zhao, P. F., Zhao, Y. L. & Wang, J. W. Cloning and characterization of an elicitor-responsive gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase involved in 20-hydroxyecdysone production in cell cultures of Cyanotis arachnoidea. Plant. Physiol. Biochem. 84, 1–9. https://doi.org/10.1016/j.plaphy.2014.08.021 (2014).
-
Sharma, S. N., Jha, Z., Sinha, R. K. & Geda, A. K. Jasmonate-induced biosynthesis of Andrographolide in Andrographis paniculata. Physiol. Plant. 153, 221–229. https://doi.org/10.1111/ppl.12252 (2015).
-
Wang, J. et al. Transcriptome profiling shows gene regulation patterns in ginsenoside pathway in response to Methyl jasmonate in Panax quinquefolium adventitious root. Sci. Rep. 6, 37263. https://doi.org/10.1038/srep37263 (2016).
-
Dong, G. et al. Transcriptome analysis of Taraxacum kok-saghyz reveals the role of exogenous Methyl jasmonate in regulating rubber biosynthesis and drought tolerance. Gene 867, 147346. https://doi.org/10.1016/j.gene.2023.147346 (2023).
-
Cao, X. et al. Transcriptome sequencing of MeJA-Induced Taraxacum Koksaghyz Rodin to identify genes related to rubber formation. Sci. Rep. 7, 15697. https://doi.org/10.1038/s41598-017-14890-z (2017).
-
Wang, Q., Quan, S. & Xiao, H. Towards efficient terpenoid biosynthesis: manipulating IPP and DMAPP supply. Bioresour Bioprocess. 6, 1–13. https://doi.org/10.1186/s40643-019-0242-z (2019).
-
Chen, X. et al. Full-length transcriptome sequencing and Methyl jasmonate-induced expression profile analysis of genes related to Patchoulol biosynthesis and regulation in Pogostemon Cablin. BMC Plant. Biol. 19, 266. https://doi.org/10.1186/s12870-019-1884-x (2019).
-
Wei, Q. et al. Transcriptome analysis reveals regulation mechanism of Methyl jasmonate-induced terpenes biosynthesis in Curcuma Wenyujin. PLoS One. 17 (6), e0270309. https://doi.org/10.1371/journal.pone.0270309 (2022).
-
Majdi, M., Malekzadeh-Mashhady, A., Maroufi, A. & Crocoll, C. Tissue-specific gene-expression patterns of genes associated with thymol/carvacrol biosynthesis in thyme (Thymus vulgaris L.) and their differential changes upon treatment with abiotic elicitors. Plant. Physiol. Biochem. 115, 152–162. https://doi.org/10.1016/j.plaphy.2017.03.016 (2017).
-
Liu, J. P. et al. Transcriptome analysis of Hevea Brasiliensis in response to exogenous Methyl jasmonate provides novel insights into regulation of jasmonate-elicited rubber biosynthesis. Physiol. Mol. Biol. Plants. 24, 349–358. https://doi.org/10.1007/s12298-018-0529-0 (2018).
-
Szkopińska, A. & Płochocka, D. Farnesyl diphosphate synthase; regulation of product specificity. Acta Biochim. Pol. 52, 45–55. https://doi.org/10.18388/abp.2005_3485 (2005).
-
Kajiura, H. et al. Two Eucommia Farnesyl diphosphate synthases exhibit distinct enzymatic properties leading to end product preferences. Biochimie 139, 95–106. https://doi.org/10.1016/j.biochi.2017.05.001 (2017).
-
Kim, O. T. et al. Molecular characterization of ginseng Farnesyl diphosphate synthase gene and its up-regulation by Methyl jasmonate. Biol. Plant. 54, 47–53. https://doi.org/10.1007/s10535-010-0007-1 (2010).
-
Gong, D. et al. Functional characterization of a Farnesyl diphosphate synthase from Dendrobium nobile Lindl. AMB Expr. 12, 129. https://doi.org/10.1186/s13568-022-01470-2 (2022).
-
Pu, G. B. et al. Salicylic acid activates Artemisinin biosynthesis in Artemisia annua L. Plant. Cell. Rep. 28, 1127–1135. https://doi.org/10.1007/s00299-009-0713-3 (2009).
-
Darbahani, M., Rahaie, M., Ebrahimi, A. & Khosrowshahli, M. The effects of several abiotic elicitors on the expression of genes of key enzymes involved in the parthenolide biosynthetic pathway and its content in feverfew plant (Tanacetum parthenium L). Nat. Prod. Res. 36, 6132–6136. https://doi.org/10.1080/14786419.2022.2055555 (2022).
-
Mandujano-Chávez, A., Schoenbeck, M. A., Ralston, L. F., Lozoya-Gloria, E. & Chappell, J. Differential induction of sesquiterpene metabolism in tobacco cell suspension cultures by Methyl jasmonate and fungal elicitor. Arch. Biochem. Biophys. 381 (2), 285–294. https://doi.org/10.1006/abbi.2000.1961 (2000).
-
Benevenuto, R. F. et al. Transcriptional profiling of Methyl jasmonate-induced defense responses in Bilberry (Vaccinium myrtillus L). BMC Plant Biol. 19, 70. https://doi.org/10.1186/s12870-019-1650-0 (2019).
-
Rajkumari, S. & Devi, H. S. Effect of elicitation on terpinen-4-ol production and differential expression analysis of terpenes biosynthesis genes in Zingiber Montanum. Sci. Hort. 342, 113849. https://doi.org/10.1016/j.scienta.2024.113849 (2025).
-
De Bruyn, C. et al. Identification and characterization of CYP71 subclade cytochrome P450 enzymes involved in the biosynthesis of bitterness compounds in Cichorium intybus. Front. Plant. Sci. 14, 1200253. https://doi.org/10.3389/fpls.2023.1200253 (2023).
-
Spitaler, R. et al. Altitudinal variation of secondary metabolite profiles in flowering heads of Arnica Montana Cv. ARBO Phytochemistry. 67, 409–417. https://doi.org/10.1016/j.phytochem.2005.11.018 (2006).
-
Douglas, J. A. et al. Sesquiterpene lactones in Arnica montana: a rapid analytical method and the effects of flower maturity and simulated mechanical harvesting on quality and yield. Planta Med. 70, 166–170. https://doi.org/10.1055/s-2004-815495 (2004).
-
Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20 (4), 1160–1166. https://doi.org/10.1093/bib/bbx108 (2019).
-
Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134. https://doi.org/10.1186/1471-2105-13-134 (2012).
