A universal polyphosphate kinase powers in vitro transcription

a-universal-polyphosphate-kinase-powers-in-vitro-transcription
A universal polyphosphate kinase powers in vitro transcription

References

  1. Kornberg, A., Kornberg, S. R. & Simms, E. Metaphosphate synthesis by an enzyme from Escherichia coli. Biochim. Biophys. Acta 20, 215–227 (1956).

    Google Scholar 

  2. Kornberg, S. R. Adenosine triphosphate synthesis from polyphosphate by an enzyme from Escherichia coli. Biochim. Biophys. Acta 26, 294–300 (1957).

    Google Scholar 

  3. Racki, L. R. et al. Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 114, E2440–E2449 (2017).

    Google Scholar 

  4. Achbergerová, L. & Nahálka, J. Polyphosphate–an ancient energy source and active metabolic regulator. Microb. Cell Fact. 10, 63 (2011).

    Google Scholar 

  5. Kornberg, A., Rao, N. N. & Ault-Riché, D. Inorganic polyphosphate: a molecule of many functions. Annu. Rev. Biochem. 68, 89–125 (1999).

    Google Scholar 

  6. Zhang, H., Ishige, K. & Kornberg, A. A polyphosphate kinase (PPK2) widely conserved in bacteria. Proc. Natl. Acad. Sci. USA 99, 16678–16683 (2002).

    Google Scholar 

  7. Ishige, K., Zhang, H. & Kornberg, A. Polyphosphate kinase (PPK2), a potent, polyphosphate-driven generator of GTP. Proc. Natl. Acad. Sci. USA 99, 16684–16688 (2002).

    Google Scholar 

  8. Leipe, D. D., Koonin, E. V. & Aravind, L. Evolution and classification of P-loop kinases and related proteins. J. Mol. Biol. 333, 781–815 (2003).

    Google Scholar 

  9. Longo, L. M. et al. On the emergence of P-Loop NTPase and Rossmann enzymes from a Beta-Alpha-Beta ancestral fragment. Elife 9, e64415 (2020).

    Google Scholar 

  10. Neville, N., Roberge, N. & Jia, Z. Polyphosphate kinase 2 (PPK2) enzymes: structure, function, and roles in bacterial physiology and virulence. Int. J. Mol. Sci. 23, 670 (2022).

    Google Scholar 

  11. Motomura, K. et al. A new subfamily of polyphosphate kinase 2 (class III PPK2) catalyzes both nucleoside monophosphate phosphorylation and nucleoside diphosphate phosphorylation. Appl. Environ. Microbiol. 80, 2602–2608 (2014).

    Google Scholar 

  12. Andexer, J. N. & Richter, M. Emerging enzymes for ATP regeneration in biocatalytic processes. Chembiochem 16, 380–386 (2015).

    Google Scholar 

  13. Tavanti, M., Hosford, J., Lloyd, R. C. & Brown, M. J. B. Recent developments and challenges for the industrial implementation of polyphosphate kinases. Chemcatchem 13, 3565–3580 (2021).

  14. Intasian, P. et al. Enzymes, in vivo biocatalysis, and metabolic engineering for enabling a circular economy and sustainability. Chem. Rev. 121, 10367–10451 (2021).

    Google Scholar 

  15. Rasor, B. J. et al. Toward sustainable, cell-free biomanufacturing. Curr. Opin. Biotechnol. 69, 136–144 (2021).

    Google Scholar 

  16. Suzuki, S., Hara, R. & Kino, K. Production of aminoacyl prolines using the adenylation domain of nonribosomal peptide synthetase with class III polyphosphate kinase 2-mediated ATP regeneration. J. Biosci. Bioeng. 125, 644–648 (2018).

    Google Scholar 

  17. Lubberink, M. et al. Biocatalytic monoacylation of symmetrical diamines and its application to the synthesis of pharmaceutically relevant amides. ACS Catal. 10, 10005–10009 (2020).

    Google Scholar 

  18. Fedorchuk, T. P. et al. One-pot biocatalytic transformation of adipic acid to 6-aminocaproic acid and 1,6-hexamethylenediamine using carboxylic acid reductases and transaminases. J. Am. Chem. Soc. 142, 1038–1048 (2020).

    Google Scholar 

  19. Nocek, B. P. et al. Structural insights into substrate selectivity and activity of bacterial polyphosphate kinases. ACS Catal. 8, 10746–10760 (2018).

    Google Scholar 

  20. Wang, P.-H. et al. A bifunctional polyphosphate kinase driving the regeneration of nucleoside triphosphate and reconstituted cell-free protein synthesis. ACS Synth. Biol. 9, 36–42 (2020).

    Google Scholar 

  21. De, B. F., Maertens, J., Beauprez, J., Soetaert, W. & De, M. M. Biotechnological advances in UDP-sugar based glycosylation of small molecules. Biotechnol. Adv. 33, 288–302 (2015).

    Google Scholar 

  22. Blunsom, N. J. & Cockcroft, S. CDP-diacylglycerol synthases (CDS): Gateway to phosphatidylinositol and cardiolipin synthesis. Front. Cell Dev. Biol. 8, 63 (2020).

    Google Scholar 

  23. Frank, C., Teleki, A. & Jendrossek, D. Characterization of agrobacterium tumefaciens PPKs reveals the formation of oligophosphorylated products up to nucleoside nona-phosphates. Appl. Microbiol. Biotechnol. 104, 9683–9692 (2020).

    Google Scholar 

  24. Ogawa, M. et al. Class III polyphosphate kinase 2 enzymes catalyze the pyrophosphorylation of adenosine-5’-monophosphate. Chembiochem 20, 2961–2967 (2019).

    Google Scholar 

  25. Mordhorst, S. et al. Several polyphosphate kinase 2 enzymes catalyse the production of adenosine 5’-polyphosphates. Chembiochem 20, 1019–1022 (2019).

    Google Scholar 

  26. Ycas, M. On earlier states of the biochemical system. J. Theor. Biol. 44, 145–160 (1974).

    Google Scholar 

  27. Jensen, R. A. Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30, 409–425 (1976).

    Google Scholar 

  28. Matsumoto, R., Matsuura, T. & Longo, L. M. Distribution of polyphosphate kinase 2 genes in bacteria underscores a dynamic evolutionary history. Proteins 93, 972–980 (2024).

  29. Wang, L. et al. Distribution patterns of polyphosphate metabolism pathway and its relationships with bacterial durability and virulence. Front. Microbiol. 9, 782 (2018).

    Google Scholar 

  30. Usvalampi, A., Li, H. & Frey, A. D. Production of glucose 6-phosphate from a cellulosic feedstock in a one pot multi-enzyme synthesis. Front. Bioeng. Biotechnol. 9, 678038 (2021).

    Google Scholar 

  31. Rexer, T. F. T. et al. One pot synthesis of GDP-mannose by a multi-enzyme cascade for enzymatic assembly of lipid-linked oligosaccharides. Biotechnol. Bioeng. 115, 192–205 (2018).

    Google Scholar 

  32. Zheng, J., Guo, N., Huang, Y., Guo, X. & Wagner, A. High temperature delays and low temperature accelerates evolution of a new protein phenotype. Nat. Commun. 15, 2495 (2024).

    Google Scholar 

  33. Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D. S. How protein stability and new functions trade off. PLoS Comput. Biol. 4, e1000002 (2008).

    Google Scholar 

  34. Ngivprom, U. et al. Synthesis of nicotinamide mononucleotide from xylose via coupling engineered Escherichia coli and a biocatalytic cascade. Chembiochem 23, e202200071 (2022).

    Google Scholar 

  35. Kimura, Y. & Kamatani, S. Catalytic activity profile of polyP:AMP phosphotransferase from Myxococcus xanthus. J. Biosci. Bioeng. 131, 147–152 (2021).

    Google Scholar 

  36. Li, Z. et al. Efficient one-pot synthesis of cytidine 5’-monophosphate using an extremophilic enzyme cascade system. J. Agric. Food Chem. 68, 9188–9194 (2020).

    Google Scholar 

  37. Achbergerová, L. & Nahálka, J. Degradation of polyphosphates by polyphosphate kinases from Ruegeria pomeroyi. Biotechnol. Lett. 36, 2029–2035 (2014).

    Google Scholar 

  38. Gao, H. et al. A high-throughput dual system to screen polyphosphate kinase mutants for efficient ATP regeneration in L-theanine biocatalysis. Biotechnol. Biofuels Bioprod. 16, 122 (2023).

    Google Scholar 

  39. Gupta, M. N. & Uversky, V. N. Moonlighting enzymes: when cellular context defines specificity. Cell. Mol. Life Sci. 80, 130 (2023).

    Google Scholar 

  40. Wu, W.-J., Zhou, Y.-X., Liu, Y., Chen, G.-J. & Du, Z.-J. Mangrovibacterium marinum sp. nov., isolated from a coastal sediment. Antonie Van Leeuwenhoek 107, 1583–1589 (2015).

    Google Scholar 

  41. Osterberg, R. & Orgel, L. E. Polyphosphate and trimetaphosphate formation under potentially prebiotic conditions. J. Mol. Evol. 1, 241–248 (1972).

    Google Scholar 

  42. Weiner, M. L. et al. Toxicological review of inorganic phosphates. Food Chem. Toxicol. 39, 759–786 (2001).

    Google Scholar 

  43. Ritz, E., Hahn, K., Ketteler, M., Kuhlmann, M. K. & Mann, J. Phosphate additives in food–a health risk. Dtsch. Arztebl. Int. 109, 49–55 (2012).

    Google Scholar 

  44. Tao, Y. H. et al. Hydration water drives the self-assembly of guanosine monophosphate. Biophys. J. 123, 931–939 (2024).

    Google Scholar 

  45. Cassidy, L. M., Burcar, B. T., Stevens, W., Moriarty, E. M. & McGown, L. B. Guanine-centric self-assembly of nucleotides in water: an important consideration in prebiotic chemistry. Astrobiology 14, 876–886 (2014).

    Google Scholar 

  46. Batten, L. E. et al. Biochemical and structural characterization of polyphosphate kinase 2 from the intracellular pathogen Francisella tularensis. Biosci. Rep. 36, e00294 (2015).

    Google Scholar 

  47. Parnell, A. E. et al. Substrate recognition and mechanism revealed by ligand-bound polyphosphate kinase 2 structures. Proc. Natl. Acad. Sci. USA 115, 3350–3355 (2018).

    Google Scholar 

  48. Nocek, B. et al. Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria. Proc. Natl. Acad. Sci. USA 105, 17730–17735 (2008).

    Google Scholar 

  49. Kotaka, M. et al. Structures of S. aureus thymidylate kinase reveal an atypical active site configuration and an intermediate conformational state upon substrate binding. Protein Sci. 15, 774–784 (2006).

    Google Scholar 

  50. Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    Google Scholar 

  51. Chen, X. et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nat. Biotechnol. 37, 1287–1293 (2019).

    Google Scholar 

  52. Roy, B., Depaix, A., Périgaud, C. & Peyrottes, S. Recent trends in nucleotide synthesis. Chem. Rev. 116, 7854–7897 (2016).

    Google Scholar 

  53. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Google Scholar 

  54. Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).

    Google Scholar 

  55. Stoltzfus, A. On the possibility of constructive neutral evolution. J. Mol. Evol. 49, 169–181 (1999).

    Google Scholar 

  56. Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79, 471–505 (2010).

    Google Scholar 

  57. Chaloupkova, R. et al. Light-emitting dehalogenases: reconstruction of multifunctional biocatalysts. ACS Catal. 9, 4810–4823 (2019).

    Google Scholar 

  58. Risso, V. A., Gavira, J. A., Mejia-Carmona, D. F., Gaucher, E. A. & Sanchez-Ruiz, J. M. Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian β-lactamases. J. Am. Chem. Soc. 135, 2899–2902 (2013).

    Google Scholar 

  59. Alva, V., Söding, J. & Lupas, A. N. A vocabulary of ancient peptides at the origin of folded proteins. Elife 4, e09410 (2015).

    Google Scholar 

  60. Corlett, T., Smith, H. B., Smith, E., Goldford, J. & Longo, L. M. The history of enzyme evolution embedded in metabolism. Preprint at bioRxiv https://doi.org/10.1101/2025.07.16.665256 (2025).

  61. Romero Romero, M. L. et al. Simple yet functional phosphate-loop proteins. Proc. Natl. Acad. Sci. Usa. 115, E11943–E11950 (2018).

    Google Scholar 

  62. Vyas, P. et al. Helicase-like functions in phosphate loop containing beta-alpha polypeptides. Proc. Natl. Acad. Sci. USA 118, e2016131118 (2021).

    Google Scholar 

  63. Vyas, P., Malitsky, S., Itkin, M. & Tawfik, D. S. On the origins of enzymes: phosphate-binding polypeptides mediate phosphoryl transfer to synthesize adenosine triphosphate. J. Am. Chem. Soc. 145, 8344–8354 (2023).

    Google Scholar 

  64. Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).

    Google Scholar 

  65. Li, W., Jaroszewski, L. & Godzik, A. Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17, 282–283 (2001).

    Google Scholar 

  66. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Google Scholar 

  67. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Google Scholar 

  68. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Google Scholar 

  69. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Google Scholar 

  70. Shen, X.-X., Li, Y., Hittinger, C. T., Chen, X.-X. & Rokas, A. An investigation of irreproducibility in maximum likelihood phylogenetic inference. Nat. Commun. 11, 6096 (2020).

    Google Scholar 

  71. Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    Google Scholar 

  72. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Google Scholar 

  73. Philo, J. S. SEDNTERP: a calculation and database utility to aid interpretation of analytical ultracentrifugation and light scattering data. Eur. Biophys. J. 52, 233–266 (2023).

    Google Scholar 

  74. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Google Scholar 

  75. Matsuura, T., Kazuta, Y., Aita, T., Adachi, J. & Yomo, T. Quantifying epistatic interactions among the components constituting the protein translation system. Mol. Syst. Biol. 5, 297 (2009).

    Google Scholar 

  76. Kuge, M. et al. Structural insights into broad-range polyphosphate kinase 2-II enzymes applicable for pyrimidine nucleoside diphosphate synthesis. Chembiochem 26, e202400970 (2025).

  77. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Google Scholar 

Download references