References
-
Quillet, R. et al. RF-amide neuropeptides and their receptors in mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol. Ther. 160, 84–132. https://doi.org/10.1016/j.pharmthera.2016.02.005 (2016).
-
Nagata, S. FMRFamides. In Comparative Endocrinology of Basic and Clinical Research. 432–433 (eds Ando, H., Ukena, K. & Nagata, S.) (Academic Press, 2016).
-
Peymen, K., Watteyne, J., Frooninckx, L., Schoofs, L. & Beets, I. The FMRFamide-like peptide family in nematodes. Front. Endocrinol. (Lausanne). 5, 90. https://doi.org/10.3389/fendo.2014.00090 (2014).
-
Kaletta, T. & Hengartner, M. O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5, 387–399. (2006).
-
Chang, Y. J. et al. Modulation of locomotion and reproduction by FLP neuropeptides in the nematode Caenorhabditis elegans. PLoS One. 10, e0135164. https://doi.org/10.1371/journal.pone.0135164 (2015).
-
Turek, M., Besseling, J., Spies, J. P., König, S. & Bringmann, H. Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep. Elife 5, e12499. https://doi.org/10.7554/eLife.12499 (2016).
-
Nath, R. D., Chow, E. S., Wang, H., Schwarz, E. M. & Sternberg, P. W. C. elegans stress-induced sleep emerges from the collective action of multiple neuropeptides. Curr. Biol. 26, 2446–2455. https://doi.org/10.1016/j.cub.2016.07.048 (2016).
-
Lee, J. et al. (ed, S.) FMRFamide-like peptides expand the behavioral repertoire of a densely connected nervous system. Proc. Natl. Acad. Sci. U S A 114 E10726–E10735 https://doi.org/10.1073/pnas.1710374114 (2017).
-
Chew, Y. L. et al. An afferent neuropeptide system transmits mechanosensory signals triggering sensitization and arousal in C. elegans. Neuron 99, 1233–1246. https://doi.org/10.1016/j.neuron.2018.08.003 (2018).
-
Marques, F., Falquet, L., Vandewyer, E., Beets, I. & Glauser, D. A. Signaling via the FLP-14/FRPR-19 neuropeptide pathway sustains nociceptive response to repeated noxious stimuli in C. elegans. PLoS Genet. 17, e1009880. https://doi.org/10.1371/journal.pgen.1009880 (2021).
-
Reilly, D. K. et al. Distinct neuropeptide-receptor modules regulate a sex-specific behavioral response to a pheromone. Commun. Biol. 4, 1018. https://doi.org/10.1038/s42003-021-02547-7 (2021).
-
Busack, I. & Bringmann, H. A sleep-active neuron can promote survival while sleep behavior is disturbed. PLoS Genet. 19, e1010665. https://doi.org/10.1371/journal.pgen.1010665 (2023).
-
Nose, M. et al. Protein Research Foundation,. Regulatory mechanism of larval diapause by a C. elegans neuropeptide, FLP-3. In Peptide Science 2021 (ed. Hayashi, Y.) 91–94. (2022).
-
Ono, M., Hori, Y., Matsunaga, Y., Iwasaki, T. & Kawano, T. Regulatory mechanism of larval diapause by a C. elegans neuropeptide, FLP-6 in the intestine. In Peptide Science 2021 (ed. Hayashi, Y.) 87–90. (Protein Research Foundation, 2022).
-
Kageyama, N. et al. The FMRFamide-like peptide FLP-2 is involved in the modulation of larval development and adult lifespan by regulating the secretion of the insulin-like peptide INS-35 in Caenorhabditis elegans. Biosci. Biotechnol. Biochem. 86, 1231–1239. https://doi.org/10.1093/bbb/zbac108 (2022).
-
Une, R. et al. The FMRFamide-like peptide FLP-1 modulates larval development by regulating the production and secretion of the insulin-like peptide DAF-28 in Caenorhabditis elegans. Biosci. Biotechnol. Biochem. 87, 171–178. https://doi.org/10.1093/bbb/zbac187 (2023).
-
Hu, P. J. Dauer in WormBook (ed. The C. elegans Research Community). https://doi.org/10.1895/wormbook.1.144.1 (2007).
-
Li, W., Kennedy, S. G. & Ruvkun, G. daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev. 17, 844–848. https://doi.org/10.1101/gad.1066503 (2003).
-
Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946. https://doi.org/10.1126/science (1997).
-
Ren, P. & et el. Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science 274, 1389–1391. https://doi.org/10.1126/science.274.5291.1389 (1996).
-
Bargmann, C. I. & Horvitz, H. R. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251, 1243–1246. https://doi.org/10.1126/science.2006412 (1991).
-
Matsunaga, Y. et al. Diapause is associated with a change in the Polarity of secretion of insulin-like peptides. Nat. Commun. 7, 10573. https://doi.org/10.1038/ncomms10573 (2016).
-
Honda, Y. et al. Genes down-regulated in spaceflight are involved in the control of longevity in Caenorhabditis elegans. Sci. Rep. 2, 487. https://doi.org/10.1038/srep00487 (2012).
-
Ono, M. et al. The G protein-coupled receptor neuropeptide receptor-15 modulates larval development via the transforming growth factor-β DAF-7 protein in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 660, 28–34. https://doi.org/10.1016/j.bbrc.2023.03.080 (2023).
-
Fares, H. & Greenwald, I. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159, 133–145. https://doi.org/10.1093/genetics/159.1.133 (2001).
-
Kao, G. et al. ASNA-1 positively regulates insulin secretion in C. elegans and mammalian cells. Cell 128, 577–587. https://doi.org/10.1016/j.cell.2006.12.031 (2007).
-
Gengyo-Ando, K. & Mitani, S. Characterization of mutations induced by Ethyl methanesulfonate, UV, and trimethylpsoralen in the nematode Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 269, 64–69. https://doi.org/10.1006/bbrc.2000.2260 (2000).
-
Georgi, L. L., Albert, P. S. & Riddle, D. L. daf-1, a C. elegans gene controlling Dauer larva development, encodes a novel receptor protein kinase. Cell 61, 635–645. https://doi.org/10.1016/0092-8674(90)90475-t (1990).
-
Patterson, G. I., Koweek, A., Wong, A., Liu, Y. & Ruvkun, G. The DAF-3 Smad protein antagonizes TGF-beta-related receptor signaling in the Caenorhabditis elegans Dauer pathway. Genes Dev. 11, 2679–2690. https://doi.org/10.1101/gad.11.20.2679 (1997).
-
Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C. daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322. https://doi.org/10.1126/science.278.5341.1319 (1997).
-
Ogg, S. et al. The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999. https://doi.org/10.1038/40194 (1997).
-
Butcher, R. A. et al. Biosynthesis of the caenorhabditis elegans Dauer pheromone. Proc. Natl. Acad. Sci. U S A. 106, 1875–1879. https://doi.org/10.1073/pnas.0810338106 (2009).
-
Kawano, T. et al. Lifespan extending activity of substances secreted by the nematode Caenorhabditis elegans that include the dauer-inducing pheromone. Biosci. Biotechnol. Biochem. 69, 2479–2481. https://doi.org/10.1271/bbb.69.2479.2005 (2005).
-
Beets, I. et al. System-wide mapping of peptide-GPCR interactions in C. elegans. Cell. Rep. 42, 113058. https://doi.org/10.1016/j.celrep.2023.113058 (2023).
-
Hilbert, Z. A. & Kim, D. H. PDF-1 neuropeptide signaling regulates sexually dimorphic gene expression in shared sensory neurons of C. elegans. eLife 7, e36547. https://doi.org/10.7554/eLife.36547 (2018).
-
Rossi, L. et al. The neuropeptide FLP-11 induces and self-inhibits sleep through the receptor DMSR-1 in Caenorhabiditis elegans. Curr. Biol. 35, 2183–2194. https://doi.org/10.1016/j.cub.2025.03.039 (2025).
-
Tan, C. M. J. et al. The role of neuropeptide Y in cardiovascular health and disease. Front. Physiol. 9, 1281. https://doi.org/10.3389/fphys.2018.01281 (2018).
-
Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94. https://doi.org/10.1093/genetics/77.1.71 (1974).
-
Zhang, M. G. & Sternberg, P. W. Both entry to and exit from diapause arrest in Caenorhabditis elegans are regulated by a steroid hormone pathway. Development 149, dev200173. https://doi.org/10.1242/dev.200173 (2022).
-
Mariol, M. C., Walter, L., Bellemin, S. & Gieseler, K. A rapid protocol for integrating extrachromosomal arrays with high transmission rate into the C. elegans genome. J. Vis. Exp. 82, e50773. https://doi.org/10.3791/50773 (2013).
-
Shiraishi, A. et al. Repertoires of G protein-coupled receptors for Ciona-specific neuropeptides. Proc. Natl. Acad. Sci. U S A. 116, 7847–7856. https://doi.org/10.1073/pnas.1816640116 (2019).
-
Li, C. & Kim, K. Family of FLP peptides in caenorhabditis elegans and related nematodes. Front. Endocrinol. 5, 150. 0.3389/fendo.2014.00150 (2014).
