Acoustic separation and isolation of viruses, small extracellular vesicles and other nanoscale bioparticles

acoustic-separation-and-isolation-of-viruses,-small-extracellular-vesicles-and-other-nanoscale-bioparticles
Acoustic separation and isolation of viruses, small extracellular vesicles and other nanoscale bioparticles
  • Witwer, K. W. & Théry, C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J. Extracell. Vesicles 8, 1648167 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • El Andaloussi, S., Mäger, I., Breakefield, X. O. & Wood, M. J. A. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357 (2013).

    Article  PubMed  Google Scholar 

  • Dai, J. et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther. 5, 145 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Drosten, C. et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967––1976 (2003).

    Article  PubMed  Google Scholar 

  • Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gire, S. K. et al. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345, 1369–1372 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Su, J. et al. Cell–cell communication: new insights and clinical implications. Signal Transduct. Target. Ther. 9, 196 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  PubMed  Google Scholar 

  • Théry, C., Ostrowski, M. & Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593 (2009).

    Article  PubMed  Google Scholar 

  • Gonzales, P. A. et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J. Am. Soc. Nephrol. 20 (2009).

  • Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang, T. et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat. Commun. 9, 191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Nedawi, K. et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624 (2008).

    Article  PubMed  Google Scholar 

  • Liu, M., Hu, S., Yan, N., Popowski, K. D. & Cheng, K. Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat. Nanotechnol. 19, 565–575 (2024).

    Article  PubMed  Google Scholar 

  • Wang, Z. et al. Inhalation of ACE2-expressing lung exosomes provides prophylactic protection against SARS-CoV-2. Nat. Commun. 15, 2236 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Margolis, L. B. & Sadovsky, Y. When extracellular vesicles go viral: a bird’s eye view. Pathog. Immun. 10, 140–158 (2024).

    Article  PubMed  Google Scholar 

  • Momen-Heravi, F. in Extracellular Vesicles: Methods and Protocols (eds Kuo, W. P. & Jia, S.) 25–32 (Springer, 2017).

  • Jia, Y. et al. Small extracellular vesicles isolation and separation: current techniques, pending questions and clinical applications. Theranostics 12, 6548–6575 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugita, Y., Noda, T., Sagara, H. & Kawaoka, Y. Ultracentrifugation deforms unfixed influenza A virions. J. Gen. Virol. 92, 2485–2493 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gias, E., Nielsen, S. U., Morgan, L. A. F. & Toms, G. L. Purification of human respiratory syncytial virus by ultracentrifugation in iodixanol density gradient. J. Virol. Methods 147, 328–332 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergqvist, M., Lässer, C., Crescitelli, R., Park, K.-S. & Lötvall, J. A non-centrifugation method to concentrate and purify extracellular vesicles using superabsorbent polymer followed by size exclusion chromatography. J. Extracell. Vesicles 14, e70037 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sidhom, K., Obi, P. O. & Saleem, A. A review of exosomal isolation methods: is size exclusion chromatography the best option? Int. J. Mol. Sci. 21, 6466 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Stott, S. L. et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl Acad. Sci. USA 107, 18392–18397 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, P. et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat. Biomed. Eng. 3, 438–451 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabe, D. C. et al. Ultrasensitive detection of intact SARS-CoV-2 particles in complex biofluids using microfluidic affinity capture. Sci. Adv. 11, eadh1167 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunkara, V. et al. Fully automated, label-free isolation of extracellular vesicles from whole blood for cancer diagnosis and monitoring. Theranostics 9, 1851–1863 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, J. & Gao, D. Recent advances in aptamer-based microfluidic biosensors for the isolation, signal amplification and detection of exosomes. Sensors 25, 848 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32, 490–495 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Reátegui, E. et al. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat. Commun. 9, 175 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, L. R., Cox, E. C., Austin, R. H. & Sturm, J. C. Continuous particle separation through deterministic lateral displacement. Science 304, 987–990 (2004).

    Article  PubMed  Google Scholar 

  • Wunsch, B. H. et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat. Nanotechnol. 11, 936–940 (2016).

    Article  PubMed  Google Scholar 

  • Shi, J., Huang, H., Stratton, Z., Huang, Y. & Huang, T. J. Continuous particle separation in a microfluidic channelvia standing surface acoustic waves (SSAW). Lab Chip 9, 3354–3359 (2009).

    Article  PubMed  Google Scholar 

  • Ding, X. et al. Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl Acad. Sci. USA 111, 12992–12997 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl Acad. Sci. USA 112, 4970–4975 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, M. et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc. Natl Acad. Sci. USA 114, 10584–10589 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, M. et al. Acoustofluidic separation of cells and particles. Microsyst. Nanoeng. 5, 32 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Z. et al. Acoustofluidic salivary exosome isolation: a liquid biopsy compatible approach for human papillomavirus–associated oropharyngeal cancer detection. J. Mol. Diagn. 22, 50–59 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu, Y. et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci. Adv. 7, eabc0467 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia, J. et al. Acoustofluidic virus isolation via bessel beam excitation separation technology. ACS Nano 18, 22596–22607 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Naquin, T. D. et al. Acoustic separation and concentration of exosomes for nucleotide detection: ASCENDx. Sci. Adv. 10, eadm8597 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Z. et al. Acoustofluidic separation enables early diagnosis of traumatic brain injury based on circulating exosomes. Microsyst. Nanoeng. 7, 20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi, W. et al. CDK1-loaded extracellular vesicles promote cell cycle to reverse impaired wound healing in diabetic obese mice. Mol. Ther. 33, 1118–1133 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Welsh, J. A. et al. MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J. Extracell. Vesicles 9, 1713526 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Welsh, J. A. et al. A compendium of single extracellular vesicle flow cytometry. J. Extracell. Vesicles 12, e12299 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozowsky, J. et al. exceRpt: a comprehensive analytic platform for extracellular RNA profiling. Cell Syst. 8, 352–357.e353 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinestrosa, J. P. et al. Early-stage multi-cancer detection using an extracellular vesicle protein-based blood test. Commun. Med. 2, 29 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sigdel, S., Swenson, S. & Wang, J. Extracellular vesicles in neurodegenerative diseases: an update. Int. J. Mol. Sci. https://doi.org/10.3390/ijms241713161 (2023).

  • Zarà, M. et al. Circulating small extracellular vesicles reflect the severity of myocardial damage in STEMI patients. Biomolecules 13, 1470 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz, C. G., Sodawalla, H. M., Mohanakumar, T. & Bansal, S. Extracellular vesicles as biomarkers in infectious diseases. Biology 14, 182 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, M. et al. Extracellular vesicles: a new star for gene drug delivery. Int. J. Nanomed. 19, 2241–2264 (2024).

    Article  Google Scholar 

  • Lundstrom, K. Viral vectors in gene therapy. Diseases https://doi.org/10.3390/diseases6020042 (2018).

  • Berumen Sánchez, G., Bunn, K. E., Pua, H. H. & Rafat, M. Extracellular vesicles: mediators of intercellular communication in tissue injury and disease. Cell Commun. Signal. 19, 104 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, J. et al. Human perivascular stem cell-derived extracellular vesicles mediate bone repair. eLife 8, e48191 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker, L. M. & Burton, D. R. Passive immunotherapy of viral infections: ‘super-antibodies’ enter the fray. Nat. Rev. Immunol. 18, 297–308 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Raab-Traub, N. & Dittmer, D. P. Viral effects on the content and function of extracellular vesicles. Nat. Rev. Microbiol. 15, 559–572 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, P., Kaslan, M., Lee, S. H., Yao, J. & Gao, Z. Progress in exosome isolation techniques. Theranostics 7, 789–804 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, Y. et al. Extracellular vesicles isolated by size-exclusion chromatography present suitability for RNomics analysis in plasma. J. Transl. Med. 19, 104 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezeli, M. et al. Comparative proteomic analysis of extracellular vesicles isolated by acoustic trapping or differential centrifugation. Anal. Chem. 88, 8577–8586 (2016).

    Article  PubMed  Google Scholar 

  • Alexandre, L. et al. Effect of sample preprocessing and size-based extraction methods on the physical and molecular profiles of extracellular vesicles. ACS Sens. 9, 1239–1251 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, J. et al. Review on strategies and technologies for exosome isolation and purification. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2021.811971 (2022).

  • Wullenweber, M. S., Kottmeier, J., Kampen, I., Dietzel, A. & Kwade, A. Simulative investigation of different DLD microsystem designs with increased Reynolds numbers using a two-way coupled IBM-CFD/6-DOF approach. Processes 10, 403 (2022).

    Article  Google Scholar 

  • Zhang, J. et al. Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16, 10–34 (2016).

    Article  PubMed  Google Scholar 

  • Nguyen, K. T. et al. Integrated techniques for extracellular particle separation and single-particle multiparametric characterization to track cancer biomarkers from tissue to biofluids. Preprint at bioRxiv https://doi.org/10.1101/2025.01.09.632270 (2025).

  • Cai, S. et al. Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proc. Natl Acad. Sci. USA 118, e2100697118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeager, M., Wilson-Kubalek, E. M., Weiner, S. G., Brown, P. O. & Rein, A. Supramolecular organization of immature and mature murine leukemia virus revealed by electron cryo-microscopy: Implications for retroviral assembly mechanisms. Proc. Natl Acad. Sci. USA 95, 7299–7304 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, M. et al. Separating extracellular vesicles and lipoproteins via acoustofluidics. Lab Chip 19, 1174–1182 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie, Y. et al. Acoustic cell separation based on density and mechanical properties. J. Biomech. Eng. https://doi.org/10.1115/1.4046180 (2020).

  • Friend, J. & Yeo, L. Y. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83, 647–704 (2011).

    Article  Google Scholar 

  • Del Campo Fonseca, A. et al. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat. Commun. 14, 5889 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins, D. J., O’Rorke, R., Neild, A., Han, J. & Ai, Y. Acoustic fields and microfluidic patterning around embedded micro-structures subject to surface acoustic waves. Soft Matter 15, 8691–8705 (2019).

    Article  PubMed  Google Scholar 

  • Cai, H. et al. Brain organoid reservoir computing for artificial intelligence. Nat. Electron. 6, 1032–1039 (2023).

    Article  Google Scholar 

  • Drinkwater, B. W. Dynamic-field devices for the ultrasonic manipulation of microparticles. Lab Chip 16, 2360–2375 (2016).

    Article  PubMed  Google Scholar 

  • Wiklund, M., Green, R. & Ohlin, M. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Lab Chip 12, 2438–2451 (2012).

    Article  PubMed  Google Scholar 

  • Yang, S. et al. Acoustic tweezers for high-throughput single-cell analysis. Nat. Protoc. 18, 2441–2458 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, S. et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat. Mater. 21, 540–546 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, M. et al. Sound innovations for biofabrication and tissue engineering. Microsyst. Nanoeng. 10, 170 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, S. et al. Topological acoustofluidics. Nat. Mater. 24, 707–715 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rufo, J., Cai, F., Friend, J., Wiklund, M. & Huang, T. J. Acoustofluidics for biomedical applications. Nat. Rev. Methods Primers 2, 30 (2022).

    Article  Google Scholar 

  • Rufo, J., Zhang, P., Zhong, R., Lee, L. P. & Huang, T. J. A sound approach to advancing healthcare systems: the future of biomedical acoustics. Nat. Commun. 13, 3459 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • He, Y. et al. Acoustic technologies for the orchestration of cellular functions for therapeutic applications. Sci. Adv. 11, eadu4759 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, S. et al. Acoustic tweezers for advancing precision biology and medicine. Nat. Rev. Methods Primers 5, 49 (2025).

    Article  Google Scholar 

  • Comfort, N. et al. Nanoparticle tracking analysis for the quantification and size determination of extracellular vesicles. J. Vis. Exp. 169, e62447 (2021).

    Google Scholar 

  • Kim, J. et al. Comparison of EV characterization by commercial high-sensitivity flow cytometers and a custom single-molecule flow cytometer. J. Extracell. Vesicles 13, e12498 (2024).

    Article  PubMed  PubMed Central  Google Scholar