Biodegradability of selected poly(lactic acid) composites for sustainable food packaging applications

biodegradability-of-selected-poly(lactic-acid)-composites-for-sustainable-food-packaging-applications
Biodegradability of selected poly(lactic acid) composites for sustainable food packaging applications

References

  1. Athenstädt, B., Fünfrocken, M. & Schmidt, T. C. Migrating components in a polyurethane laminating adhesive identified using gas chromatography/mass spectrometry. Rapid Commun. MassSpectrom 26, 1810–1816 (2012).

    Google Scholar 

  2. Muncke, J. Exposure to endocrine disrupting compounds via the food chain: Is packaging a relevant source. Sci. Total Environ. 407, 4549–4559 (2009).

    Google Scholar 

  3. Thomas A., Singh K., Fahadha U. & Changmai M. Testing protocols for sustainable materials, packaging and shelf life. Sustain Mat Food Packag Preserv. https://doi.org/10.1016/B978-0-443-13567-5.00017-4 (2025).

  4. Robertson, B. A., Rehage, J. S. & Sih, A. Ecological novelty and the emergence of evolutionary traps. Trends Ecol. Evolut. 28, 552–560 (2013).

    Google Scholar 

  5. Nicoli M. C. Shelf-life assessment of food. Food preservation technology series. (CRS Press Taylor & Francis Group, 2012).

  6. European Commission Commission Regulation (EU) No 10/2011 of 14 January on plastic materials and articles intended to come into contact with food. J. Eur. Union 12, 1–89 (2011).

    Google Scholar 

  7. Rossi L. Plastic Packaging Materials for Food. Barrier function, mass transport, quality assurance and legislation. Wiley, New York. European Community legislation on materials and articles intended to come into contact with food, pp. 393–406 (2000).

  8. Holm V. K. Shelf life of foods in biobased packaging. In: Robertson, G. L. Ed. Food Packaging and Shelf Life: A Practical Guide. CRC Press, Boca Raton, pp. 353–362 (2010).

  9. EN 13432: 2000/AC:2005 European committee for standardization. EN 13432. Packaging—requirements for packaging recoverable through composting and biodegradation-test scheme and evaluation criteria for the final acceptance of packaging, European standard. European Committee for Standardization, Brussels, Belgium Edition (2005).

  10. Peelman N. et al. Use of biobased materials for modified atmosphere packaging of short and medium shelf-life food products. Innovative Food Science & Emerging Technologies. https://doi.org/10.1016/j.ifset.2014.06.007 (2014).

  11. Romani, S. et al. Effect of different new packaging materials on biscuit quality during accelerated storage. J. Sci. Food Agric. 95, 1736–1746 (2015).

    Google Scholar 

  12. Panseri, S. et al. Feasibility of biodegradable based packaging used for red meat storage during shelf-life: a pilot study. Food Chem. 249, 22–29 (2018).

    Google Scholar 

  13. Alfaro, M. E. C., Stares, S. L., Barra, G. M. O. & Hotza, D. Estimation of shelf life of 3D-printed PLA scaffolds by accelerated weathering. Mater. today Commun. 32, 104140 (2022).

    Google Scholar 

  14. Jung J., Cho Y., Lee Y. & Choi K. Uses and occurrences of five major alternative plasticizers, and their exposure and related endocrine outcomes in humans: a systematic review. Crit. Rev. Environ. Sci. Technol. https://doi.org/10.1080/10643389.2024.2301922 (2024).

  15. Ranakoti L. et al. Critical review on polylactic acid: properties, structure, processing, biocomposites, and nanocomposites. Materials. https://doi.org/10.3390/ma15124312 (2022).

  16. Ranakoti L. Bionanocomposites with hybrid nanomaterials for food packaging applications. Advances Biocomp App, Woodhead Publishing. 15, 4312 https://doi.org/10.1016/B978-0-443-19074-2.00007-1 (2022).

  17. da Silva D. J., de Oliveira M. M., Wang S. H., Carastan D. J., Rosa D. S. Designing antimicrobial polypropylene films with grape pomace extract for food packaging. Food Packaging Shelf Life https://doi.org/10.1016/j.fpsl.2022.100929 (2022).

  18. da Silva D. J. & de Oliveira M. M. Combined chromatographic and mass spectrometric toolbox for fingerprinting migration from PET tray during microwave heating. 34, 100929 (2022).

  19. Alin, J. & Hakkarainen, M. Simultaneous determination of antioxidants and ultraviolet stabilizers in polypropylene food packaging and food simulants by high-performance liquid chromatography. Acta Chromatographica 61, 1405–1415, https://doi.org/10.1556/1326.2017.29.2.03 (2013).

    Google Scholar 

  20. Li B., Wang Z. W., Bai Y. H. Determination of the partition and diffusion coefficients of five chemical additives from polyethylene terephthalate material in contact with food simulants. Food Packaging Shelf Life https://doi.org/10.1016/j.fpsl.2019.100332 (2019).

  21. Li, B., Wang, Z. W. & Bai, Y. H. Morphology, molecular mass changes, and degradation mechanism of poly-L-lactide in phosphate-buffered solution. Polym. Plast. Tech. Eng. 21, 100332 (2019).

    Google Scholar 

  22. Zhou, Z. H., Liu, X. P. & Liu, Q. Q. Novel aspects of the degradation process of PLA based bulky samples under conditions of high partial pressure of water vapour. Polym. Degrad. stab. 48, 115–120 (2009).

    Google Scholar 

  23. Oluwafunke P., Kucharczyk E., Hnatkova O. D., ZdenekDvorak V., Sedlarik G. O. Applications of Polylactic Acid-Magnesium Composite Materials for Sustainable Packaging Solutions. In TMS Annual Meeting & Exhibition. (Springer Nature Switzerland, 2013) pp 150-157.

  24. Ahmed T. et al. Biodegradation of plastics: current scenario and future prospects for environmental safety. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-018-1234-9 (2018).

  25. Ahmed, T., Shahid, M., Azeem, F. & Rasul, I. A state-of-the-art review on potential applications of natural fiber-reinforced polymer composite filled with inorganic nanoparticle. Compos. Part C Open Access 25, 7287–7298 (2018).

    Google Scholar 

  26. Azka M. A., Sapuan S. M., Abral H., Zainudin E. S. & Aziz F. A. An examination of recent research of water absorption behavior of natural fiber reinforced polylactic acid (PLA) composites: A review. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2024.131845 (2024).

  27. Azka M. A., Sapuan S. M., Abral, H., Zainudin E. S. & Aziz F. A. Structure, mechanical properties, and dynamics of polyethylenoxide/nanoclay nacre-mimetic nanocomposites. Macromol 268, 131845 https://doi.org/10.1021/acs.macromol.9b01931 (2024).

  28. Murariu, M., Paint, Y., Murariu, O., Laoutid, F. & Dubois, P. Recent advances in production of ecofriendly polylactide (PLA)–calcium sulfate (anhydrite II) composites: from the evidence of filler stability to the effects of PLA matrix and filling on key properties. Polymers 14, 2360 (2022).

    Google Scholar 

  29. Korumilli T., Abdullahi A., Kumar T. S. & Rao K. J. Nanoclay-reinforced bio-composites and their packaging applications. Nanoclay Based Sustain. Mat. 467-485 https://doi.org/10.1016/B978-0-443-13390-9.00022-9 (2024).

  30. Gerometta M., Rocca-Smith J. R., Domenek S. & Karbowiak T. Physical and Chemical Stability of PLA in Food Packaging. Ref. Modul. Food Sci. https://doi.org/10.1016/B978-0-08-100596-5.22471-2 (2019).

  31. Moldovan A. et al. Development and characterization of PLA food packaging composite. J. Therm. Anal. Cal. https://doi.org/10.1007/s10973-024-13841-x (2024).

  32. Bondarev A. et al. P L A. plasticized with esters for packaging applications. Studia Univ Babes-Bolyai, Chemia, 68(2) (2023).

  33. Ozkoc, G. & Kemaloglu, S. Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA. J. Appl. Polym. Sci. 114, 2481–2487 (2009).

    Google Scholar 

  34. Sato S., Gondo D., Wada T., Kanehashi S., Nagai K. Effects of various liquid organic solvents on solvent-induced crystallization of amorphous poly (lactic acid) film. J. Appl. Polymer Sci. https://doi.org/10.1002/app.38833 (2013).

  35. Velichkova H. et al Influence of polymer swelling and dissolution into food simulants on the release of graphene nanoplates and carbon nanotubes from poly (lactic) acid and polypropylene composite films. J. Appl. Polymer Sci. https://doi.org/10.1002/app.45469 (2017).

  36. Shen, L., Yang, H., Ying, J., Qiao, F. & Peng, M. Preparation and mechanical properties of carbon fiber reinforced hydroxyapatite/polylactide biocomposites. J. Mater. Sci: Mater. Med. 20, 2259–2265 (2009).

    Google Scholar 

  37. Shanmuganathan, K., Capadona, J. R., Rowan, S. J. & Weder, C. Biomimetic mechanically adaptive nanocomposites. Prog. Polym. Sci. 35, 212–222 (2010).

    Google Scholar 

  38. Triantafyllou, V., Akrida-Demertzi, K. & Demertzis, P. A study on the migration of organic pollutants from recycled paperboard packaging materials to solid food matrices. Food Chem. 101, 1759–1768 (2007).

    Google Scholar 

  39. Petrovics N. et al. Effect of temperature and plasticizer content of polypropylene and polylactic acid on migration kinetics into isooctane and 95 v/v% ethanol as alternative fatty food simulants. Food Packag Shelf. Life. https://doi.org/10.1016/j.fpsl.2022.100916 (2022).

  40. Rocca-Smith, J. R. et al. Effect of the state of water and relative humidity on ageing of PLA films. Food Chem. 236, 109–119 (2017).

    Google Scholar 

  41. Gupta, R. K. et al. Migration of chemical compounds from packaging materials into packaged foods: interaction, mechanism, assessment, and regulations. Foods 13, 3125 (2024).

    Google Scholar 

  42. Liu T. et al. Enhancement of mechanical and thermal properties of PBSeT copolyester by synthesizing AB-type PBSeT-PLA macromolecules. Adv. Comp. Hybrid Mat. https://doi.org/10.1007/s42114-024-01151-7 (2025).

  43. Yenidoğan, S., Aydemir, C. & Doğan, C. E. Packaging–food interaction and chemical migration. cellulose. Chem. Technol. 57, 1029–1040 (2023).

    Google Scholar 

  44. Brandsch R. et al. Practical guidelines on the application of migration modelling for the estimation of specific migration. (E. J. Hoekstra.Publications Office, 2015) pp.40.

  45. Metak, A. M., Nabhani, F. & Connolly, S. N. Migration of engineered nanoparticles from packaging into food products. LWT Food Sci. Technol. 64, 781–787 (2015).

    Google Scholar 

  46. Liu, F., Hu, C. Y., Zhao, Q., Shi, Y. J. & Zhong, H. N. Migration of copper from nanocopper/LDPE composite films. Food Addit. 33, 1741–1749 (2016).

    Google Scholar 

  47. Su, Q. Z. et al. Effect of antioxidants and light stabilisers on silver migration from nanosilver-polyethylene composite packaging films into food simulants. Food Addit. Contam A 32, 1561–1566 (2015).

    Google Scholar 

  48. Eti, S. A. et al. Assessment of heavy metals migrated from food contact plastic packaging: Bangladesh perspective. Heliyon 9, e19667 (2023).

    Google Scholar 

  49. Anvar A. et al. Evaluation of the antibacterial effects of Ag-TiO2 nanoparticles and optimization of its migration to sturgeon caviar (Beluga). Iran. J. Fish. Sci. https://dor.isc.ac/dor/20.1001.1.15622916.2019.18.4.13.4 (2019).

  50. Bott, J., Störmer, A. & Franz, R. A model study into the migration potential of nanoparticles from plastics nanocomposites for food contact. Food Packag. Shelf Life 2, 73–80 (2014).

    Google Scholar 

  51. Duncan T. V. & Pillai K. Release of engineered nanomaterials from polymer nanocomposites: diffusion, dissolution, and desorption. ACS Appl. Mater Interfaces (2015). https://doi.org/10.1021/am5062745

  52. Bayoumi, M. A., Kamal, R. M., Abd El Aal, S. F. & Awad, E. I. Assessment of a regulatory sanitization process in Egyptian dairy plants in regard to the adherence of some food-borne pathogens and their biofilms. Int. J. Food Micro. 158, 225–231 (2012).

    Google Scholar 

  53. Padhan, B. et al. Recent advancements in nanocomposites-based antibiofilm food packaging. J. Polym. Mater. 42, 411–433 (2025).

    Google Scholar 

  54. Magyari, K., Stefan, R., Vodnar, D. C. & Vulpoi, A. The silver influence on the structure and antibacterial prop erties of the bioactive 10B2O3 − 30Na2O − 60P2O2 glass. J. Non CrystalSol. 402, 182–186 (2014).

    Google Scholar 

  55. Katsikogianni, M. & Missirlis, Y. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteriamaterial inter actions. Eur. Cells Mat. 8, 37–57 (2004).

    Google Scholar 

  56. Faille, C. et al. Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: Role of sur face hydrophobicity. Canad J. Microbio. 48, 728–738 (2002).

    Google Scholar 

  57. Nithya M., Balaji R., Sundarajan T. & Sivalingam V. Novel PLA/chitosan blends with bio-released Ag-NPs nanocomposites for eco-friendly food packaging. Environ. Sci. Pollut. Res. 1-10 https://doi.org/10.1007/s11356-025-36610-1 (2025).

  58. Linghu C. et al. Long-term adhesion durability revealed through a rheological paradigm. Sci. Adv. 14;11. https://doi.org/10.1126/sciadv.adt3957 (2005).

  59. Linghu C. et al. Versatile adhesive skin enhances robotic interactions with the environment. Sci. Adv. 11, https://doi.org/10.1126/sciadv.adt4765 (2025).

  60. Weber, F., Dötschel, V., Steinmann, P., Pfaller, S. & Ries, M. Evaluating the impact of filler size and filler content on the stiffness, strength, and toughness of polymer nanocomposites using coarse-grained molecular dynamics. Eng. Fract. Mech. 307, 110270 (2024).

    Google Scholar 

  61. Shalygina, T. A. & Rudenko, M. S. Nemtsev IV, Parfenov VA, Voronina SY, Simonov-Emelyanov ID, Borisova PE. Influence of the filler particles’ surface morphology on the polyurethane matrix’s structure formation in the composite. Polymers 9 13, 3864 (2021).

    Google Scholar 

  62. https://www.natureworksllc.com/~/media/technical_resources/technical_data_sheets/technicaldatasheet_2003d_ffp-fsw_pdf.pdf

  63. https://download.s21i.co99.net/32226014/0/0/ABUIABA9GAAg0JWosAYooJGFvAI.pdf?f=lx975.pdf&v=1711934161.64

  64. https://www.specialchem.com/polymer-additives/product/proviron-proviplast-2624

  65. https://www.sigmaaldrich.com/US/en/product/mm/807486

  66. Javed R., Ahmed M., Haq I., Nisa S. & Zia M. PVP and PEG Doped CuO Nanoparticles Are More Biologically Active: Antibacterial, Antioxidant, Antidiabetic and Cytotoxic Perspective. Mat. Sci. Eng. https://doi.org/10.1016/j.msec.2017.05.006 (2017).

  67. Popescu V. et al. Antimicrobial poly (lactic acid)/copper nanocomposites for food packaging materials. Mat. https://doi.org/10.3390/ma16041415 (2023).

  68. de Normalisation C. E. EN 13130-1: Materials and articles in contact with foodstuffs–Plastics substances subject to limitation–Part 1: Guide to test methods for the specific migration of substances from plastics to foods and food simulants and the determination of substances in plastics and the selection of conditions of exposure to food simulants. Brussels: CEN (2004).

  69. Standard for water absorption test, ASTM D570. https://www.intertek.com/polymers-plastics/testlopedia/water-absorption-astm-d570/

  70. Carpa R., Keul A., MunteanV, Dobrotă C. Characterization of Halophilic Bacterial Communities in Turda Salt Mine (Romania). Orig Life EvolBiosph https://doi.org/10.1007/s11084-014-9375-4 (2014).

Download references