Novel α-amylolyzates derived from enzymatically synthesized α-glucans using diverse glycogen branching enzymes decelerate glucose release by modulation of intestinal α-glucosidases

novel-α-amylolyzates-derived-from-enzymatically-synthesized-α-glucans-using-diverse-glycogen-branching-enzymes-decelerate-glucose-release-by-modulation-of-intestinal-α-glucosidases
Novel α-amylolyzates derived from enzymatically synthesized α-glucans using diverse glycogen branching enzymes decelerate glucose release by modulation of intestinal α-glucosidases
  • Englyst, H. N. & Hudson, G. J. The classification and measurement of dietary carbohydrates. Food Chem. 57, 15–21 (1996).

    Google Scholar 

  • Yang, X. et al. Resistant starch regulates gut microbiota: structure, biochemistry and cell signalling. Cell. Physiol. Biochem. 42, 306–318 (2017).

    Google Scholar 

  • Zhang, G. & Hamaker, B. R. Slowly digestible starch: concept, mechanism, and proposed extended glycemic index. Crit. Rev. Food Sci. Nutr. 49, 852–867 (2009).

    Google Scholar 

  • Morris, K. L. & Zemel, M. B. Glycemic index, cardiovascular disease, and obesity. Nutr. Rev. 57, 273–276 (1999).

    Google Scholar 

  • Aston, L. M. Glycaemic index and metabolic disease risk. Proc. Nutr. Soc. 65, 125–134 (2006).

    Google Scholar 

  • Shanik, M. H. et al. Insulin resistance and hyperinsulinemia: Is hyperinsulinemia the cart or the horse? Diabetes Care 31, S262–S268 (2008).

    Google Scholar 

  • Ludwig, D. S. et al. The carbohydrate-insulin model: a physiological perspective on the obesity pandemic. Am. J. Clin. Nutr. 114, 1873–1885 (2021).

    Google Scholar 

  • Hasek, L. Y. et al. Dietary slowly digestible starch triggers the gut–brain axis in obese rats with accompanied reduced food intake. Mol. Nutr. Food Res. 62, 1700117 (2018).

    Google Scholar 

  • Chisbert, M. et al. The impact of slowly digestible and resistant starch on glucose homeostasis and insulin resistance. Curr. Opin. Clin. Nutr. Metab. Care 27, 338–343 (2024).

    Google Scholar 

  • Zhang, G. et al. Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability. Food Funct. 6, 1072–1089 (2015).

    Google Scholar 

  • Wolf, B. W. et al. Pullulan is a slowly digested carbohydrate in humans. J. Nutr. 133, 1051–1055 (2003).

    Google Scholar 

  • Cisse, F. et al. Preload of slowly digestible carbohydrate microspheres decreases gastric emptying rate of subsequent meal in humans. Nutr. Res. 45, 46–51 (2017).

    Google Scholar 

  • Jones, B. et al. Glucose absorption from starch hydrolysates in the human jejunum. Gut 24, 1152–1160 (1983).

    Google Scholar 

  • Nichols, B. L. et al. Human small intestinal maltase-glucoamylase cDNA cloning homology to sucrase-isomaltase. J. Biol. Chem. 273, 3076–3081 (1998).

    Google Scholar 

  • Hunziker, W. et al. The sucrase-isomaltase complex: primary structure, membrane-orientation, and evolution of a stalked, intrinsic brush border protein. Cell 46, 227–234 (1986).

    Google Scholar 

  • Kittisuban, P. et al. Slow glucose release property of enzyme-synthesized highly branched maltodextrins differs among starch sources. Carbohydr. Polym. 107, 182–191 (2014).

    Google Scholar 

  • Sim, L. et al. Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. J. Biol. Chem. 285, 17763–17770 (2010).

    Google Scholar 

  • Lee, B.-H. et al. Contribution of the individual small intestinal α-glucosidases to digestion of unusual α-linked glycemic disaccharides. J. Agric. Food Chem. 64, 6487–6494 (2016).

  • Palomo, M. et al. The unique branching patterns of Deinococcus glycogen branching enzymes are determined by their N-terminal domains. Appl. Environ. Microbiol. 75, 1355–1362 (2009).

    Google Scholar 

  • Roussel, X. et al. Characterization of substrate and product specificity of the purified recombinant glycogen branching enzyme of Rhodothermus obamensis. Biochim. Biophys. Acta Gen. Subj. 1830, 2167–2177 (2013).

    Google Scholar 

  • Sorndech, W. et al. Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates. Carbohydr. Polym. 152, 51–61 (2016).

  • Li, Y. et al. Modification by α-d-glucan branching enzyme lowers the in vitro digestibility of starch from different sources. Int. J. Biol. Macromol. 107, 1758–1764 (2018).

    Google Scholar 

  • Shim, Y.-E. et al. Highly branched α-limit dextrins attenuate the glycemic response and stimulate the secretion of satiety hormone peptide YY. Food Hydrocoll. 108, 106057 (2020).

    Google Scholar 

  • Wang, Y. et al. Association of slowly digestible starch intake with reduction of postprandial glycemic response: an update meta-analysis. Foods 12, 89 (2022).

    Google Scholar 

  • Seo, D.-H. et al. Versatile biotechnological applications of amylosucrase, a novel glucosyltransferase. Food Sci. Biotechnol. 29, 1–16 (2020).

    Google Scholar 

  • Hong, M.-G. et al. Effect of highly branched α-glucans synthesized by dual glycosyltransferases on the glucose release rate. Carbohydr. Polym. 278, 119016 (2022).

    Google Scholar 

  • Gaenssle, A. L. O. et al. GH13 Glycogen branching enzymes can adapt the substrate chain length towards their preferences via α-1, 4-transglycosylation. Enz. Microb. Technol. 150, 109882 (2021).

    Google Scholar 

  • Lee, B.-H. et al. Heterologous expression and characterization of glycogen branching enzyme from Synechocystis sp. PCC6803. J. Microb. Biotechnol. 18, 1386–1392 (2008).

    Google Scholar 

  • Yoo, S. Expression, Characterization, and Application of Bifidobacterium Glycogen Branching Enzyme. Master’s degree thesis, Sejong Univ. (2020).

  • Shim, Y.-E. et al. Production of highly branched α-limit dextrins with enhanced slow digestibility by various glycogen-branching enzymes. Carbohydr. Polym. 310, 120730 (2023).

    Google Scholar 

  • Song, Y.-B. et al. Enzymatic amplification of α-1, 6 linkages by glycosyltransferases on banana starches to enhance slow digestibility at the small intestinal α-glucosidase level. Food Hydrocoll. 168, 111518 (2025).

  • Lee, B.-H. & Hamaker, B. R. Number of branch points in α-limit dextrins impact glucose generation rates by mammalian mucosal α-glucosidases. Carbohydr. Polym. 157, 207–213 (2017).

    Google Scholar 

  • Lee, B.-H. et al. Modulation of starch digestion for slow glucose release through “toggling” of activities of mucosal α-glucosidases. J. Biol. Chem. 287, 31929–31938 (2012).

    Google Scholar 

  • Lee, B. H. et al. Mucosal C-terminal maltase-glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation. Mol. Nutr. Food Res. 58, 1111–1121 (2014).

    Google Scholar 

  • Sim, L. et al. Human intestinal maltase–glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J. Mol. Biol. 375, 782–792 (2008).

    Google Scholar 

  • Jung, J.-H. et al. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344, 1612–1619 (2009).

    Google Scholar 

  • Potocki-Veronese, G. et al. Amylose synthesized in vitro by amylosucrase: morphology, structure, and properties. Biomacromolecules 6, 1000–1011 (2005).

    Google Scholar 

  • Sumner, J. B. & Howell, S. F. A method for determination of saccharase activity. J. Biol. Chem. 108, 51–54 (1935).

    Google Scholar 

  • Park, J.-H. et al. The action mode of Thermus aquaticus YT-1 4-α-glucanotransferase and its chimeric enzymes introduced with starch-binding domain on amylose and amylopectin. Carbohydr. Polym. 67, 164–173 (2007).

    Google Scholar 

  • Rolland-Sabaté, A. et al. Elongation and insolubilisation of α-glucans by the action of Neisseria polysaccharea amylosucrase. J. Cereal Sci. 40, 17–30 (2004).

    Google Scholar 

  • Lee, B.-H. et al. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal α-glucosidase level and are slowly digestible in vivo. PloS ONE 8, e59745 (2013).

    Google Scholar 

  • Akai, H. et al. Complete hydrolysis of branching linkages in glycogen by Pseudomonas isoamylase: distribution of linear chains. Biochim. Biophys. Acta Gen. Subj. 237, 422–429 (1971).

    Google Scholar 

  • Ryu, J. H. et al. Production and characterization of digestion-resistant starch by the reaction of Neisseria polysaccharea amylosucrase. Starch-Stärke 62, 221–228 (2010).

    Google Scholar 

  • Gidley, M. J. Quantification of the structural features of starch polysaccharides by NMR spectroscopy. Carbohydr. Res. 139, 85–93 (1985).

    Google Scholar 

  • Yoo, S.-H. & Jane, J. -l Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multi-angle laser-light scattering and refractive index detectors. Carbohydr. Polym. 49, 307–314 (2002).

    Google Scholar 

  • Song, Y.-B. et al. New insights suggest isomaltooligosaccharides are slowly digestible carbohydrates, rather than dietary fibers, at constitutive mammalian α-glucosidase levels. Food Chem. 383, 132456 (2022).

    Google Scholar 

  • Shin, H. et al. Optimization of in vitro carbohydrate digestion by mammalian mucosal α-glucosidases and its applications to hydrolyze the various sources of starches. Food Hydrocoll.87, 470–476 (2019).

    Google Scholar 

  • Vasanthan, T. Enzymatic quantitation of total starch in plant products. Curr. Protoc. Food Anal. Chem. 1, E2–2 (2001).

  • Nava Rodriguez, N. E. Engineered Expression System in K. phaffii for Expression of Human Alpha-glucosidases, Their Characterization and Inhibition. Doctoral dissertation, University of Waterloo (2020).