Microengineering of the capillary interface of midbrain dopaminergic neurons to study Parkinson’s disease vascular alterations

microengineering-of-the-capillary-interface-of-midbrain-dopaminergic-neurons-to-study-parkinson’s-disease-vascular-alterations
Microengineering of the capillary interface of midbrain dopaminergic neurons to study Parkinson’s disease vascular alterations

References

  1. Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Prim. 3, 1–21 (2017).

    Google Scholar 

  2. G. B. D 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 459–480 (2019).

    Google Scholar 

  3. Marras, C. et al. Prevalence of Parkinson’s disease across North America. npj Parkinson’s. Dis. 4, 1–7 (2018).

    Google Scholar 

  4. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    Google Scholar 

  5. Pearce, R. K. B., Hawkes, C. H. & Daniel, S. E. The anterior olfactory nucleus in Parkinson’s disease. Mov. Disord. 10, 283–287 (1995).

    Google Scholar 

  6. LeWitt, P. A. Levodopa therapy for Parkinson’s disease: pharmacokinetics and pharmacodynamics. Mov. Disord. 30, 64–72 (2015).

    Google Scholar 

  7. Shulman, L. M., Taback, R. L., Bean, J. & Weiner, W. J. Comorbidity of the nonmotor symptoms of Parkinson’s disease. Mov. Disord. 16, 507–510 (2001).

    Google Scholar 

  8. Damier, P., Hirsch, E. C., Agid, Y. & Graybiel, A. M. The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122, 1437–1448 (1999).

    Google Scholar 

  9. Morales, I. et al. Neuroglial transmitophagy and Parkinson’s disease. Glia 68, 2277–2299 (2020).

    Google Scholar 

  10. Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018).

    Google Scholar 

  11. Kouli. et al. 2018).

  12. Dickson, D. W. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb. Perspect. Med 2, a009258 (2012).

    Google Scholar 

  13. Brettschneider, J., Tredici, K. D., Lee, V. M.-Y. & Trojanowski, J. Q. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat. Rev. Neurosci. 16, 109–120 (2015).

    Google Scholar 

  14. Luk, K. C. et al. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med 209, 975–986 (2012).

    Google Scholar 

  15. Jucker, M. & Walker, L. C. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat. Neurosci. 21, 1341–1349 (2018).

    Google Scholar 

  16. Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. -Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. 95, 6469–6473 (1998).

    Google Scholar 

  17. Goedert, M., Spillantini, M. G., Del Tredici, K. & Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24 (2013).

    Google Scholar 

  18. Wakabayashi, K., Tanji, K., Mori, F. & Takahashi, H. The Lewy body in Parkinson’s disease: Molecules implicated in the formation and degradation of α-synuclein aggregates. https://onlinelibrary.wiley.com/doi/10.1111/j.1440-1789.2007.00803.x (2007).

  19. Henderson, M. X. et al. Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nat. Neurosci. 22, 1248–1257 (2019).

    Google Scholar 

  20. Luna, E. & Luk, K. C. Bent out of shape: α-Synuclein misfolding and the convergence of pathogenic pathways in Parkinson’s disease. FEBS Lett. 589, 3749–3759 (2015).

    Google Scholar 

  21. Luk, K. C. et al. Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl. Acad. Sci. 106, 20051–20056 (2009).

    Google Scholar 

  22. Prusiner, S. B. et al. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc. Natl. Acad. Sci. 112, E5308–E5317 (2015).

    Google Scholar 

  23. Sacino, A. N. et al. Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc. Natl. Acad. Sci. 111, 10732–10737 (2014).

    Google Scholar 

  24. Ferreira, N. et al. Trans-synaptic spreading of alpha-synuclein pathology through sensory afferents leads to sensory nerve degeneration and neuropathic pain. acta neuropathol. commun. 9, 31 (2021).

    Google Scholar 

  25. Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body–like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med 14, 504–506 (2008).

    Google Scholar 

  26. Li, J.-Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med 14, 501–503 (2008).

    Google Scholar 

  27. Guan, J. et al. Vascular degeneration in Parkinson’s disease. Brain Pathol. 23, 154–164 (2013).

    Google Scholar 

  28. Pediaditakis, I. et al. Modeling alpha-synuclein pathology in a human brain-chip to assess blood-brain barrier disruption. Nat. Commun. 12, 5907 (2021).

    Google Scholar 

  29. Kortekaas, R. et al. Blood–brain barrier dysfunction in Parkinsonian midbrain in vivo. Ann. Neurol. 57, 176–179 (2005).

    Google Scholar 

  30. Rektor, I. et al. Impairment of brain vessels may contribute to mortality in patients with Parkinson’s disease. Mov. Disord. 27, 1169–1172 (2012).

    Google Scholar 

  31. Paul, G. & Elabi, O. F. Microvascular Changes in Parkinson’s Disease- Focus on the Neurovascular Unit. Front. Aging Neurosci. 14, 853372 (2022).

  32. Issidorides, M. R. Neuronal vascular relationships in the zona compacta of normal and Parkinsonian substantia nigra. Brain Res. 25, 289–299 (1971).

    Google Scholar 

  33. Yang, P. et al. String vessel formation is increased in the brain of Parkinson disease. J. Parkinson’s. Dis. 5, 821–836 (2015).

    Google Scholar 

  34. Brown, W. R. A review of string vessels or collapsed, empty basement membrane tubes. J. Alzheimer’s. Dis. 21, 725–739 (2010).

    Google Scholar 

  35. Zhang, C. et al. Vascular, flow and perfusion abnormalities in Parkinson’s disease. Parkinsonism Relat. Disord. 73, 8–13 (2020).

    Google Scholar 

  36. Al-Bachari, S., Naish, J. H., Parker, G. J. M., Emsley, H. C. A. & Parkes, L. M. Blood–brain barrier leakage is increased in Parkinson’s disease. Front. Physiol. 11, 593026 (2020).

  37. Laganà, M. M. et al. Multimodal evaluation of neurovascular functionality in early Parkinson’s Disease. Front. Neurol. 11, 831 (2020).

  38. Farkas, E., De Jong, G. I., de Vos, R. A., Jansen Steur, E. N. & Luiten, P. G. Pathological features of cerebral cortical capillaries are doubled in Alzheimer’s disease and Parkinson’s disease. Acta Neuropathol. 100, 395–402 (2000).

    Google Scholar 

  39. Rite, I., Machado, A., Cano, J. & Venero, J. L. Blood–brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J. Neurochem. 101, 1567–1582 (2007).

    Google Scholar 

  40. Elabi, O. et al. Human α-synuclein overexpression in a mouse model of Parkinson’s disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Sci. Rep. 11, 1120 (2021).

    Google Scholar 

  41. Faucheux, B. A., Bonnet, A. M., Agid, Y. & Hirsch, E. C. Blood vessels change in the mesencephalon of patients with Parkinson’s disease. Lancet 353, 981–982 (1999).

    Google Scholar 

  42. Huang, R. et al. Endothelial LRP1-ICD accelerates cognition-associated alpha-synuclein pathology and neurodegeneration through PARP1 activation in a mouse model of Parkinson’s disease. Mol. Neurobiol. 60, 979–1003 (2023).

    Google Scholar 

  43. Vandendriessche, C. et al. The spreading and effects of human recombinant α-synuclein preformed fibrils in the cerebrospinal fluid of mice. eNeuro. https://www.eneuro.org/content/11/3/ENEURO.0024-23.2024 (2024).

  44. Lan, G. et al. Astrocytic VEGFA: an essential mediator in blood–brain-barrier disruption in Parkinson’s disease. Glia 70, 337–353 (2022).

    Google Scholar 

  45. Lau, K., Porschen, L. T., Richter, F. & Gericke, B. Microvascular blood-brain barrier alterations in isolated brain capillaries of mice over-expressing alpha-synuclein (Thy1-aSyn line 61). Neurobiol. Dis. 187, 106298 (2023).

    Google Scholar 

  46. Recasens, A., Ulusoy, A., Kahle, P. J., Di Monte, D. A. & Dehay, B. In vivo models of alpha-synuclein transmission and propagation. Cell Tissue Res 373, 183–193 (2018).

    Google Scholar 

  47. Potashkin, J. A., Blume, S. R. & Runkle, N. K. Limitations of animal models of Parkinson’s disease. Parkinsons Dis. 2011, 658083 (2010).

    Google Scholar 

  48. Kuan, W.-L. et al. α-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Exp. Neurol. 285, 72–81 (2016).

    Google Scholar 

  49. Haruwaka, K. et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat. Commun. 10, 5816 (2019).

    Google Scholar 

  50. Hourfar, H. et al. The impact of α-synuclein aggregates on blood-brain barrier integrity in the presence of neurovascular unit cells. Int. J. Biol. Macromol. 229, 305–320 (2023).

    Google Scholar 

  51. Banks, W. A., Kovac, A. & Morofuji, Y. Neurovascular unit crosstalk: pericytes and astrocytes modify cytokine secretion patterns of brain endothelial cells. J. Cereb. Blood Flow. Metab. 38, 1104–1118 (2018).

    Google Scholar 

  52. Khalid Iqbal, M. et al. The impact of the blood–brain barrier and its dysfunction in Parkinson’s disease: contributions to pathogenesis and progression. ACS Omega 9, 45663–45672 (2024).

    Google Scholar 

  53. Bogale, T. A. et al. Alpha-synuclein in the regulation of brain endothelial and perivascular cells: gaps and future perspectives. Front. Immunol. 12, 611761 (2021).

  54. Dravid, A., Raos, B., Svirskis, D. & O’Carroll, S. J. Optimised techniques for high-throughput screening of differentiated SH-SY5Y cells and application for neurite outgrowth assays. Sci. Rep. 11, 23935 (2021).

    Google Scholar 

  55. Shipley, M. M., Mangold, C. A. & Szpara, M. L. Differentiation of the SH-SY5Y human neuroblastoma cell line. J. Vis. Exp. 53193. https://doi.org/10.3791/53193 (2016).

  56. Nikonenko, I. et al. PSD-95 promotes synaptogenesis and multiinnervated spine formation through nitric oxide signaling. J. Cell Biol. 183, 1115–1127 (2008).

    Google Scholar 

  57. Wu, Q., Sun, M., Bernard, L. P. & Zhang, H. Postsynaptic density 95 (PSD-95) serine 561 phosphorylation regulates a conformational switch and bidirectional dendritic spine structural plasticity. J. Biol. Chem. 292, 16150–16160 (2017).

    Google Scholar 

  58. Thibaut, F., Vaugeois, J. M. & Petit, M. The dopamine transporter: characterization and physiopathologic implications]. Encephale 21, 445–451 (1995).

    Google Scholar 

  59. Mulvihill, K. G. Presynaptic regulation of dopamine release: Role of the DAT and VMAT2 transporters. Neurochem. Int. 122, 94–105 (2019).

    Google Scholar 

  60. Bergers, G. & Song, S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 7, 452–464 (2005).

    Google Scholar 

  61. Liu, Q., Yang, Y. & Fan, X. Microvascular pericytes in brain-associated vascular disease. Biomed. Pharmacother. 121, 109633 (2020).

    Google Scholar 

  62. Beard, E., Lengacher, S., Dias, S., Magistretti, P. J. & Finsterwald, C. Astrocytes as key regulators of brain energy metabolism: new therapeutic perspectives. Front. Physiol. 12, 825816 (2022).

  63. Verkhratsky, A. et al. Astrocytes in human central nervous system diseases: a frontier for new therapies. Sig Transduct. Target Ther. 8, 1–37 (2023).

    Google Scholar 

  64. Calabresi, P. et al. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 14, 1–16 (2023).

    Google Scholar 

  65. Negi, S., Khurana, N. & Duggal, N. The misfolding mystery: α-synuclein and the pathogenesis of Parkinson’s disease. Neurochem. Int. 177, 105760 (2024).

    Google Scholar 

  66. He, J., Zhu, G., Wang, G. & Zhang, F. Oxidative stress and neuroinflammation potentiate each other to promote progression of dopamine neurodegeneration. Oxid. Med. Cell. Longev. 2020, 6137521 (2020).

    Google Scholar 

  67. Teleanu, D. M. et al. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J. Mol. Sci. 23, 5938 (2022).

    Google Scholar 

  68. Chakrabarti, S. & Bisaglia, M. Oxidative stress and neuroinflammation in parkinson’s disease: the role of dopamine oxidation products. Antioxidants 12, 955 (2023).

    Google Scholar 

  69. Lazzari, F. D., Bubacco, L., Whitworth, A. J. & Bisaglia, M. Superoxide radical dismutation as new therapeutic strategy in Parkinson’s disease. Aging Dis. 9, 716–728 (2018).

    Google Scholar 

  70. De Lazzari, F., Sandrelli, F., Whitworth, A. J. & Bisaglia, M. Antioxidant therapy in Parkinson’s disease: insights from Drosophila melanogaster. Antioxidants 9, 52 (2020).

    Google Scholar 

  71. Chang, K.-H. & Chen, C.-M. The role of oxidative stress in Parkinson’s disease. Antioxidants 9, 597 (2020).

    Google Scholar 

  72. Volpicelli-Daley, L. A. et al. Exogenous α-synuclein fibrils induce lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).

    Google Scholar 

  73. Guiney, S. J. et al. Fibrillar α-synuclein toxicity depends on functional lysosomes. J. Biol. Chem. 295, 17497–17513 (2020).

    Google Scholar 

  74. Howe, J. W. et al. Preformed fibrils generated from mouse alpha-synuclein produce more inclusion pathology in rats than fibrils generated from rat alpha-synuclein. Parkinsonism Relat. Disord. 89, 41–47 (2021).

    Google Scholar 

  75. Kim, S. et al. Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson’s Disease. Neuron 103, 627–641.e7 (2019).

    Google Scholar 

  76. Tanudjojo, B. et al. Phenotypic manifestation of α-synuclein strains derived from Parkinson’s disease and multiple system atrophy in human dopaminergic neurons. Nat. Commun. 12, 3817 (2021).

    Google Scholar 

  77. O’Leary, E. I. & Lee, J. C. Interplay between α-synuclein amyloid formation and membrane structure. Biochim. et. Biophys. Acta (BBA) – Proteins Proteom. 1867, 483–491 (2019).

    Google Scholar 

  78. Galvagnion, C. et al. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat. Chem. Biol. 11, 229–234 (2015).

    Google Scholar 

  79. Shahmoradian, S. H. et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 22, 1099–1109 (2019).

    Google Scholar 

  80. Mahul-Mellier, A.-L. et al. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc. Natl. Acad. Sci. 117, 4971–4982 (2020).

    Google Scholar 

  81. Peelaerts, W. et al. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522, 340–344 (2015).

    Google Scholar 

  82. Shrivastava, A. N. et al. Differential membrane binding and seeding of distinct α-synuclein fibrillar polymorphs. Biophys. J. 118, 1301–1320 (2020).

    Google Scholar 

  83. Rey, N. L. et al. α-Synuclein conformational strains spread, seed and target neuronal cells differentially after injection into the olfactory bulb. Acta Neuropathol. Commun. 7, 221 (2019).

    Google Scholar 

  84. Mori, A., Imai, Y. & Hattori, N. Lipids: key players that modulate?-Synuclein toxicity and neurodegeneration in Parkinson’s disease. Int. J. Mol. Sci. 21, 3301 (2020).

    Google Scholar 

  85. Fabelo, N. et al. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol. Med 17, 1107–1118 (2011).

    Google Scholar 

  86. Long, H., Zeng, S. & Li, D. Cellular and animal models to investigate pathogenesis of amyloid aggregation in neurodegenerative diseases. Biophys. Rep. 8, 14–28 (2022).

    Google Scholar 

  87. Wu, Q. et al. α-Synuclein (αSyn) preformed fibrils induce endogenous αSyn aggregation, compromise synaptic activity and enhance synapse loss in cultured excitatory hippocampal neurons. J. Neurosci. 39, 5080–5094 (2019).

    Google Scholar 

  88. Kim, B. J., Noh, H. R., Jeon, H. & Park, S. M. Monitoring α-synuclein aggregation Induced by Preformed α-synuclein fibrils in an in vitro model system. Exp. Neurobiol. 32, 147–156 (2023).

    Google Scholar 

  89. Wang, Y. et al. Phosphorylated α-synuclein in Parkinson’s disease. Sci. Transl. Med. 4, 121ra20–121ra20 (2012).

    Google Scholar 

  90. Chen, L. et al. Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J. Clin. Invest 119, 3257–3265 (2009).

    Google Scholar 

  91. Fujiwara, H. et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 4, 160–164 (2002).

    Google Scholar 

  92. Smith, W. W. et al. Synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. J. Neurosci. 25, 5544–5552 (2005).

    Google Scholar 

  93. Perez, R. G. et al. A role for α-synuclein in the regulation of dopamine biosynthesis. J. Neurosci. 22, 3090–3099 (2002).

    Google Scholar 

  94. Jin, M. et al. DOPAnization of tyrosine in α-synuclein by tyrosine hydroxylase leads to the formation of oligomers. Nat. Commun. 13, 6880 (2022).

    Google Scholar 

  95. Feve, A. P. Current status of tyrosine hydroxylase in management of Parkinson’s disease. CNS Neurol. Disord. Drug Targets 11, 450–455 (2012).

    Google Scholar 

  96. Gopinath, A. et al. DAT and TH expression marks human Parkinson’s disease in peripheral immune cells. npj Parkinsons Dis. 8, 1–14 (2022).

    Google Scholar 

  97. Rausch, W.-D., Wang, F. & Radad, K. From the tyrosine hydroxylase hypothesis of Parkinson’s disease to modern strategies: a short historical overview. J. Neural Transm. 129, 487–495 (2022).

    Google Scholar 

  98. Cacciaglia, R. et al. Soluble Aβ pathology predicts neurodegeneration and cognitive decline independently on p-tau in the earliest Alzheimer’s continuum: evidence across two independent cohorts. Alzheimers Dement. 21, e14415 (2025).

    Google Scholar 

  99. Dias, V., Junn, E. & Mouradian, M. M. The role of oxidative stress in Parkinson’s disease. J. Parkinson’s. Dis. 3, 461–491 (2013).

    Google Scholar 

  100. Cristóvão, A. C. et al. NADPH oxidase 1 mediates α-synucleinopathy in Parkinson’s disease. J. Neurosci. 32, 14465–14477 (2012).

    Google Scholar 

  101. Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P. & Malik, A. B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167 (2014).

    Google Scholar 

  102. Teixeira-Santos, L., Albino-Teixeira, A. & Pinho, D. Neuroinflammation, oxidative stress and their interplay in neuropathic pain: focus on specialized pro-resolving mediators and NADPH oxidase inhibitors as potential therapeutic strategies. Pharmacol. Res. 162, 105280 (2020).

    Google Scholar 

  103. Shih, R.-H., Wang, C.-Y. & Yang, C.-M. NF-kappaB signaling pathways in neurological inflammation: a mini review. Front. Mol. Neurosci. 8, 77 (2015).

  104. Singh, S. S. et al. NF-κB-mediated neuroinflammation in Parkinson’s disease and potential therapeutic effect of polyphenols. Neurotox. Res 37, 491–507 (2020).

    Google Scholar 

  105. Dolatshahi, M., Ranjbar Hameghavandi, M. H., Sabahi, M. & Rostamkhani, S. Nuclear factor-kappa B (NF-κB) in pathophysiology of Parkinson disease: diverse patterns and mechanisms contributing to neurodegeneration. Eur. J. Neurosci. 54, 4101–4123 (2021).

    Google Scholar 

  106. Tansey, M. G. & Goldberg, M. S. Neuroinflammation in Parkinson’s disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis. 37, 510–518 (2010).

    Google Scholar 

  107. Zhang, L. et al. BAD-mediated neuronal apoptosis and neuroinflammation contribute to Alzheimer’s disease pathology. iScience 24, 102942 (2021).

    Google Scholar 

  108. Hirsch, E. C. & Hunot, S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8, 382–397 (2009).

    Google Scholar 

  109. Mahul-Mellier, A.-L. et al. Fibril growth and seeding capacity play key roles in α-synuclein-mediated apoptotic cell death. Cell Death Differ. 22, 2107–2122 (2015).

    Google Scholar 

  110. Ito, N. et al. Extracellular high molecular weight α-synuclein oligomers induce cell death by disrupting the plasma membrane. npj Parkinsons Dis. 9, 1–10 (2023).

    Google Scholar 

  111. Xicoy, H., Wieringa, B. & Martens, G. J. M. The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol. Neurodegener. 12, 10 (2017).

    Google Scholar 

  112. Pérez-Acuña, D., Shin, S. J., Rhee, K. H., Kim, S. J. & Lee, S.-J. -Synuclein propagation leads to synaptic abnormalities in the cortex through microglial synapse phagocytosis. Mol. Brain 16, 72 (2023).

    Google Scholar 

  113. D’Aloia, A. et al. A new advanced cellular model of functional cholinergic-like neurons developed by reprogramming the human SH-SY5Y neuroblastoma cell line. Cell Death Discov. 10, 24 (2024).

    Google Scholar 

  114. Ferreira, S. A. & Romero-Ramos, M. Microglia response during Parkinson’s disease: alpha-synuclein intervention. Front. Cell Neurosci. 12, 247 (2018).

    Google Scholar 

  115. Lee, H.-J., Kim, C. & Lee, S.-J. Alpha-synuclein stimulation of astrocytes. Oxid. Med Cell Longev. 3, 283–287 (2010).

    Google Scholar 

  116. de Rus Jacquet, A. et al. The contribution of inflammatory astrocytes to BBB impairments in a brain-chip model of Parkinson’s disease. Nat. Commun. 14, 3651 (2023).

    Google Scholar 

  117. Carvey, P. M., Hendey, B. & Monahan, A. J. The blood–brain barrier in neurodegenerative disease: a rhetorical perspective. J. Neurochem. 111, 291–314 (2009).

    Google Scholar 

  118. Westin, J. E. et al. Endothelial proliferation and increased blood–brain barrier permeability in the basal ganglia in a rat model of 3,4-dihydroxyphenyl-l-alanine-induced dyskinesia. J. Neurosci. 26, 9448–9461 (2006).

    Google Scholar 

  119. Carta, M. et al. Role of striatal l-DOPA in the production of dyskinesia in 6-hydroxydopamine lesioned rats. J. Neurochem. 96, 1718–1727 (2006).

    Google Scholar 

  120. Edwards, D. N. et al. Integrin α5β1 inhibition by ATN-161 reduces neuroinflammation and is neuroprotective in ischemic stroke. J. Cereb. Blood Flow. Metab. 40, 1695–1708 (2020).

    Google Scholar 

  121. Winkler, E. A. et al. Blood–spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc. Natl. Acad. Sci. 111, E1035–E1042 (2014).

    Google Scholar 

  122. Padel, T. et al. Platelet-derived growth factor-BB has neurorestorative effects and modulates the pericyte response in a partial 6-hydroxydopamine lesion mouse model of Parkinson’s disease. Neurobiol. Dis. 94, 95–105 (2016).

    Google Scholar 

  123. Paek, J. et al. Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano 13, 7627–7643 (2019).

    Google Scholar 

  124. Bui, T. M., Wiesolek, H. L. & Sumagin, R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J. Leukoc. Biol. 108, 787–799 (2020).

    Google Scholar 

  125. Giannotta, M., Trani, M. & Dejana, E. VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev. Cell 26, 441–454 (2013).

    Google Scholar 

  126. Singh Angom, R. et al. VEGF receptor-1 modulates amyloid β 1-42 oligomer-induced senescence in brain endothelial cells. FASEB J. 33, 4626–4637 (2019).

    Google Scholar 

  127. Terrell-Hall, T. B., Ammer, A. G., Griffith, J. I. G. & Lockman, P. R. Permeability across a novel microfluidic blood-tumor barrier model. Fluids Barriers CNS 14, 3 (2017).

    Google Scholar 

  128. Bang, S. et al. A low permeability microfluidic blood-brain barrier platform with direct contact between perfusable vascular network and astrocytes. Sci. Rep. 7, 8083 (2017).

    Google Scholar 

  129. Akiyama, H. et al. Blood-brain barrier formation of grafted human umbilical vein endothelial cells in athymic mouse brain. Brain Res. 858, 172–176 (2000).

    Google Scholar 

  130. Wu, C.-C. et al. Human umbilical vein endothelial cells protect against hypoxic-ischemic damage in neonatal brain via stromal cell-derived factor 1/C-X-C chemokine receptor type 4. Stroke 44, 1402–1409 (2013).

    Google Scholar 

  131. Hayashi, Y. et al. Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia 19, 13–26 (1997).

    Google Scholar 

  132. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

  133. Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074.e21 (2021).

    Google Scholar 

  134. Garcia, F. J. et al. Single-cell dissection of the human brain vasculature. Nature 603, 893–899 (2022).

    Google Scholar 

  135. Bonney, S. K., Sullivan, L. T., Cherry, T. J., Daneman, R. & Shih, A. Y. Distinct features of brain perivascular fibroblasts and mural cells revealed by in vivo two-photon imaging. J. Cereb. Blood Flow. Metab. 42, 966–978 (2022).

    Google Scholar 

  136. Jones, H. E. et al. Meningeal origins and dynamics of perivascular fibroblast development on the mouse cerebral vasculature. Development 150, dev201805 (2023).

  137. Soderblom, C. et al. Perivascular Fibroblasts Form the Fibrotic Scar after Contusive Spinal Cord Injury. J. Neurosci. 33, 13882–13887 (2013).

    Google Scholar 

  138. Sosa, M. J., Shih, A. Y. & Bonney, S. K. The elusive brain perivascular fibroblast: a potential role in vascular stability and homeostasis. Front. Cardiovasc. Med. 10, 1283434 (2023).

  139. Dorrier, C. E., Jones, H. E., Pintarić, L., Siegenthaler, J. A. & Daneman, R. Emerging roles for CNS fibroblasts in health, injury and disease. Nat. Rev. Neurosci. 23, 23–34 (2022).

    Google Scholar 

  140. McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1285–1285 (1988).

    Google Scholar 

  141. Carvey, P. M. et al. 6-Hydroxydopamine-induced alterations in blood–brain barrier permeability. Eur. J. Neurosci. 22, 1158–1168 (2005).

    Google Scholar 

  142. Zhang, W. et al. Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J. 19, 533–542 (2005).

    Google Scholar 

  143. Dohgu, S. et al. Monomeric α-synuclein induces blood–brain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro. Microvasc. Res. 124, 61–66 (2019).

    Google Scholar 

  144. Brown, L. S. et al. Pericytes and neurovascular function in the healthy and diseased brain. Front. Cell. Neurosci. 13, 282 (2019).

  145. Sweeney, M. D., Ayyadurai, S. & Zlokovic, B. V. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. 19, 771–783 (2016).

    Google Scholar 

  146. Harackiewicz, O. & Grembecka, B. The role of microglia and astrocytes in the pathomechanism of neuroinflammation in Parkinson’s disease—focus on alpha-synuclein. JIN 23, 203 (2024).

    Google Scholar 

  147. Sönnerqvist, C., Brus, O. & Olivecrona, M. Validation of the scandinavian guidelines for initial management of minor and moderate head trauma in children. Eur. J. Trauma Emerg. Surg. 47, 1163–1173 (2021).

    Google Scholar 

  148. Barcia, C. et al. Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. J. Neural Transm. 112, 1237–1248 (2005).

    Google Scholar 

  149. Elabi, O. F., Cunha, J. P. M. C. M., Gaceb, A., Fex, M. & Paul, G. High-fat diet-induced diabetes leads to vascular alterations, pericyte reduction, and perivascular depletion of microglia in a 6-OHDA toxin model of Parkinson disease. J. Neuroinflamm. 18, 175 (2021).

    Google Scholar 

  150. Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 9, 653–660 (2003).

    Google Scholar 

  151. Chetta, A., Zanini, A., Torre, O. & Olivieri, D. Vascular remodelling and angiogenesis in asthma: morphological aspects and pharmacological modulation. Inflamm. Allergy Drug Targets 6, 41–45 (2007).

    Google Scholar 

  152. La Mendola, D., Trincavelli, M. L. & Martini, C. Angiogenesis in disease. Int. J. Mol. Sci. 23, 10962 (2022).

    Google Scholar 

Download references