A programmable ribozyme for RNA signal transduction

a-programmable-ribozyme-for-rna-signal-transduction
A programmable ribozyme for RNA signal transduction

References

  1. Aw, S. S., Tang, M. X., Teo, Y. N. & Cohen, S. M. A conformation-induced fluorescence method for microRNA detection. Nucleic Acids Res. 44, e92 (2016).

  2. Huang, K. et al. FASTmiR: an RNA-based sensor for in vitro quantification and live-cell localization of small RNAs. Nucleic Acids Res. 45, e130 (2017).

    Google Scholar 

  3. Jin, M., Garreau de Loubresse, N., Kim, Y., Kim, J. & Yin, P. Programmable CRISPR-Cas repression, activation, and computation with sequence-independent targets and triggers. ACS Synth. Biol. 8, 1583–1589 (2019).

    Google Scholar 

  4. Siu, K. H. & Chen, W. Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function. Nat. Chem. Biol. 15, 217–220 (2019).

    Google Scholar 

  5. Tang, W., Hu, J. H. & Liu, D. R. Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat. Commun. 8, 15939 (2017).

    Google Scholar 

  6. Kundert, K. et al. Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs. Nat. Commun. 10, 2127 (2019).

    Google Scholar 

  7. Collins, S. P., Rostain, W., Liao, C. & Beisel, C. L. Sequence-independent RNA sensing and DNA targeting by a split domain CRISPR-Cas12a gRNA switch. Nucleic Acids Res. 49, 2985–2999 (2021).

    Google Scholar 

  8. Oesinghaus, L. & Simmel, F. C. Switching the activity of Cas12a using guide RNA strand displacement circuits. Nat. Commun. 10, 2092 (2019).

    Google Scholar 

  9. Lin, J., Liu, Y., Lai, P., Ye, H. & Xu, L. Conditional guide RNA through two intermediate hairpins for programmable CRISPR/Cas9 function: building regulatory connections between endogenous RNA expressions. Nucleic Acids Res. 48, 11773–11784 (2020).

    Google Scholar 

  10. Liu, Y. et al. Engineering cell signaling using tunable CRISPR-Cpf1-based transcription factors. Nat. Commun. 8, 2095 (2017).

    Google Scholar 

  11. Liu, Y. et al. Directing cellular information flow via CRISPR signal conductors. Nat. Methods 13, 938–944 (2016).

    Google Scholar 

  12. Ferry, Q. R., Lyutova, R. & Fulga, T. A. Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nat. Commun. 8, 14633 (2017).

    Google Scholar 

  13. Lee, Y. J., Hoynes-O’Connor, A., Leong, M. C. & Moon, T. S. Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system. Nucleic Acids Res. 44, 2462–2473 (2016).

    Google Scholar 

  14. Hanewich-Hollatz, M. H., Chen, Z., Hochrein, L. M., Huang, J. & Pierce, N. A. Conditional guide RNAs: programmable conditional regulation of CRISPR/Cas function in bacterial and mammalian cells via dynamic RNA nanotechnology. ACS Cent. Sci. 5, 1241–1249 (2019).

    Google Scholar 

  15. Cox, K. J., Subramanian, H. K. K., Samaniego, C. C., Franco, E. & Choudhary, A. A universal method for sensitive and cell-free detection of CRISPR-associated nucleases. Chem. Sci. 10, 2653–2662 (2019).

    Google Scholar 

  16. Wang, X. W. et al. A microRNA-inducible CRISPR-Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat. Cell Biol. 21, 522–530 (2019).

    Google Scholar 

  17. Hirosawa, M. et al. Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch. Nucleic Acids Res. 45, e118 (2017).

    Google Scholar 

  18. Hoffmann, M. D. et al. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Res. 47, e75 (2019).

    Google Scholar 

  19. Lee, J. et al. Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA 25, 1421–1431 (2019).

    Google Scholar 

  20. Baccouche, A., Adel, A., Yachie, N., Fujii, T. & Genot, A. J. License to cut: smart RNA guides for conditional control of CRISPR-Cas9. Preprint at bioRxiv, https://doi.org/10.1101/2022.10.26.513620 (2022).

  21. Zhao, E. M. et al. RNA-responsive elements for eukaryotic translational control. Nat. Biotechnol. 40, 539–545 (2021).

  22. Qian, Y. et al. Programmable RNA sensing for cell monitoring and manipulation. Nature 610, 713–721 (2022).

  23. Kaseniit, K. E. et al. Modular, programmable RNA sensing using ADAR editing in living cells. Nat. Biotechnol. 41, 482–487 (2022).

  24. Jiang, K. et al. Programmable eukaryotic protein synthesis with RNA sensors by harnessing ADAR. Nat. Biotechnol. 41, 698–707 (2022).

  25. Ono, H. & Saito, H. Sensing intracellular signatures with synthetic mRNAs. RNA Biol. 20, 588–602 (2023).

    Google Scholar 

  26. Lee, R. T., Ng, A. S. & Ingham, P. W. Ribozyme mediated gRNA generation for in vitro and in vivo CRISPR/Cas9 mutagenesis. PLoS ONE 11, e0166020 (2016).

    Google Scholar 

  27. Gao, Y. & Zhao, Y. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J. Integr. Plant Biol. 56, 343–349 (2014).

    Google Scholar 

  28. Litke, J. L. & Jaffrey, S. R. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat. Biotechnol. 37, 667–675 (2019).

    Google Scholar 

  29. Zhong, G. et al. A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo. Nat. Biotechnol. 38, 169–175 (2020).

    Google Scholar 

  30. Lindley, S. R. et al. Ribozyme-activated mRNA trans-ligation enables large gene delivery to treat muscular dystrophies. Science 386, 762–767 (2024).

    Google Scholar 

  31. Strack, R. L., Disney, M. D. & Jaffrey, S. R. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat. Methods 10, 1219–1224 (2013).

    Google Scholar 

  32. Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    Google Scholar 

  33. Shippy, R., Lockner, R., Farnsworth, M. & Hampel, A. The hairpin ribozyme. Discovery, mechanism, and development for gene therapy. Mol. Biotechnol. 12, 117–129 (1999).

    Google Scholar 

  34. Walter, N. G. & Burke, J. M. The hairpin ribozyme: structure, assembly and catalysis. Curr. Opin. Chem. Biol. 2, 303 (1998).

    Google Scholar 

  35. Perez-Ruiz, M., Barroso-DelJesus, A. & Berzal-Herranz, A. Specificity of the hairpin ribozyme. Sequence requirements surrounding the cleavage site. J. Biol. Chem. 274, 29376–29380 (1999).

    Google Scholar 

  36. Hampel, A. & Tritz, R. RNA catalytic properties of the minimum (-)sTRSV sequence. Biochemistry 28, 4929–4933 (1989).

    Google Scholar 

  37. Schmidt, C., Welz, R. & Muller, S. RNA double cleavage by a hairpin-derived twin ribozyme. Nucleic Acids Res. 28, 886–894 (2000).

    Google Scholar 

  38. Welz, R. et al. Site-directed alteration of RNA sequence mediated by an engineered twin ribozyme. Angew. Chem. Int. Ed. 42, 2424–2427 (2003).

    Google Scholar 

  39. Pinard, R., Lambert, D., Pothiawala, G., Major, F. & Burke, J. M. Modifications and deletions of helices within the hairpin ribozyme-substrate complex: an active ribozyme lacking helix 1. RNA 10, 395–402 (2004).

    Google Scholar 

  40. Kuzmin, Y. I., Da Costa, C. P., Cottrell, J. W. & Fedor, M. J. Role of an active site adenine in hairpin ribozyme catalysis. J. Mol. Biol. 349, 989–1010 (2005).

    Google Scholar 

  41. Salter, J., Krucinska, J., Alam, S., Grum-Tokars, V. & Wedekind, J. E. Water in the active site of an all-RNA hairpin ribozyme and effects of Gua8 base variants on the geometry of phosphoryl transfer. Biochemistry 45, 686–700 (2006).

    Google Scholar 

  42. Liu, L., Cottrell, J. W., Scott, L. G. & Fedor, M. J. Direct measurement of the ionization state of an essential guanine in the hairpin ribozyme. Nat. Chem. Biol. 5, 351–357 (2009).

    Google Scholar 

  43. Nam, K., Gao, J. & York, D. M. Quantum mechanical/molecular mechanical simulation study of the mechanism of hairpin ribozyme catalysis. J. Am. Chem. Soc. 130, 4680–4691 (2008).

    Google Scholar 

  44. Daher, M., Mustoe, A. M., Morriss-Andrews, A., Brooks, C. L. & Walter, I. I. I. N.G. Tuning RNA folding and function through rational design of junction topology. Nucleic Acids Res. 45, 9706–9715 (2017).

    Google Scholar 

  45. Yadava, R. S., Choi, A. J., Lebruska, L. L. & Fedor, M. J. Hairpin ribozymes with four-way helical junctions mediate intracellular RNA ligation. J. Mol. Biol. 309, 893–902 (2001).

    Google Scholar 

  46. Mlynsky, V. et al. Extensive molecular dynamics simulations showing that canonical G8 and protonated A38H+ forms are most consistent with crystal structures of hairpin ribozyme. J. Phys. Chem. B 114, 6642–6652 (2010).

    Google Scholar 

  47. Siwkowski, A., Shippy, R. & Hampel, A. Analysis of hairpin ribozyme base mutations in loops 2 and 4 and their effects on cis-cleavage in vitro. Biochemistry 36, 3930–3940 (1997).

    Google Scholar 

  48. Soukup, G. A. & Breaker, R. R. Engineering precision RNA molecular switches. Proc. Natl. Acad. Sci. USA 96, 3584–3589 (1999).

    Google Scholar 

  49. Soukup, G. A., Emilsson, G. A. & Breaker, R. R. Altering molecular recognition of RNA aptamers by allosteric selection. J. Mol. Biol. 298, 623–632 (2000).

    Google Scholar 

  50. Zhu, J., Hieronymus, R. & Muller, S. A hairpin ribozyme derived spliceozyme. Chembiochem 24, e202300204 (2023).

    Google Scholar 

  51. Rupert, P. B., Massey, A. P., Sigurdsson, S. T. & Ferre-D’ Amare, A. R. Transition state stabilization by a catalytic RNA. Science 298, 1421–1424 (2002).

    Google Scholar 

  52. Li, X. et al. Imaging intracellular S-adenosyl methionine dynamics in live mammalian cells with a genetically encoded red fluorescent RNA-based sensor. J. Am. Chem. Soc. 142, 14117–14124 (2020).

    Google Scholar 

  53. Drude, I., Strahl, A., Galla, D., Muller, O. & Muller, S. Design of hairpin ribozyme variants with improved activity for poorly processed substrates. FEBS J. 278, 622–633 (2011).

    Google Scholar 

  54. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    Google Scholar 

  55. Bosson, A. D., Zamudio, J. R. & Sharp, P. A. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Cell 56, 347–359 (2014).

    Google Scholar 

  56. Janas, M. M. et al. Alternative RISC assembly: binding and repression of microRNA-mRNA duplexes by human Ago proteins. RNA 18, 2041–2055 (2012).

    Google Scholar 

  57. Filonov, G. S., Moon, J. D., Svensen, N. & Jaffrey, S. R. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc. 136, 16299–16308 (2014).

    Google Scholar 

  58. Wei, C., Salichos, L., Wittgrove, C. M., Rokas, A. & Patton, J. G. Transcriptome-wide analysis of small RNA expression in early zebrafish development. RNA 18, 915–929 (2012).

    Google Scholar 

  59. Tian, T., Zhao, L., Zhao, X., Zhang, M. & Meng, A. A zebrafish gene trap line expresses GFP recapturing expression pattern of foxj1b. J. Genet. Genom. 36, 581–589 (2009).

    Google Scholar 

  60. de Jong, O. G. et al. A CRISPR-Cas9-based reporter system for single-cell detection of extracellular vesicle-mediated functional transfer of RNA. Nat. Commun. 11, 1113 (2020).

    Google Scholar 

  61. Romani, A.M.P. (eds Vink, R. & Nechifor, M.) Magnesium in the Central Nervous System (Adelaide, 2011).

  62. Yan, D. H. et al. Different intracellular polyamine concentrations underlie the difference in the inward rectifier K(+) currents in atria and ventricles of the guinea-pig heart. J. Physiol. 563, 713–724 (2005).

    Google Scholar 

  63. Watanabe, S., Kusama-Eguchi, K., Kobayashi, H. & Igarashi, K. Estimation of polyamine binding to macromolecules and ATP in bovine lymphocytes and rat liver. J. Biol. Chem. 266, 20803–20809 (1991).

    Google Scholar 

  64. Berzal-Herranz, A., Joseph, S., Chowrira, B. M., Butcher, S. E. & Burke, J. M. Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J. 12, 2567–2573 (1993).

    Google Scholar 

  65. Joseph, S. & Burke, J. M. Optimization of an anti-HIV hairpin ribozyme by in vitro selection. J. Biol. Chem. 268, 24515–24518 (1993).

    Google Scholar 

  66. Welz, R., Schmidt, C. & Muller, S. Spermine supports catalysis of hairpin ribozyme variants to differing extents. Biochem. Biophys. Res. Commun. 283, 648–654 (2001).

    Google Scholar 

  67. Madeo, F., Eisenberg, T., Pietrocola, F. & Kroemer, G. Spermidine in health and disease. Science 359, eaan2788 (2018).

  68. Xiang, J. S. et al. Massively parallel RNA device engineering in mammalian cells with RNA-Seq. Nat. Commun. 10, 4327 (2019).

    Google Scholar 

  69. Felletti, M., Stifel, J., Wurmthaler, L. A., Geiger, S. & Hartig, J. S. Twister ribozymes as highly versatile expression platforms for artificial riboswitches. Nat. Commun. 7, 12834 (2016).

    Google Scholar 

  70. Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618–630 (2010).

    Google Scholar 

  71. Stewart, S. A. et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9, 493–501 (2003).

    Google Scholar 

  72. Reuter, J. S. & Mathews, D. H. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinform. 11, 129 (2010).

    Google Scholar 

  73. Ding, Y., Chan, C. Y. & Lawrence, C. E. Clustering of RNA secondary structures with application to messenger RNAs. J. Mol. Biol. 359, 554–571 (2006).

    Google Scholar 

  74. Watkins, A. M., Rangan, R. & Das, R. FARFAR2: improved de novo Rosetta prediction of complex global RNA folds. Structure 28, 963–976 e966 (2020).

    Google Scholar 

  75. Huang, J. & MacKerell, A. D. Jr CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145 (2013).

    Google Scholar 

  76. Bekker, H. et al. Gromacs: a parallel computer for molecular dynamics simulations. Phys. Comput. 92, 252–256 (1993).

    Google Scholar 

  77. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

  78. Parrinello, M. A. R., A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Google Scholar 

Download references