References
-
van Berlo, J. H. & Molkentin, J. D. An emerging consensus on cardiac regeneration. Nat. Med. 20, 1386–1393. https://doi.org/10.1038/nm.3764 (2014).
-
Savarese, G. et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc. Res. 118, 3272–3287. https://doi.org/10.1093/cvr/cvac013 (2023).
-
Boulet, J., Wanderley, M. R. B. Jr. & Mehra, M. R. Contemporary Left Ventricular Assist Device Therapy as a Bridge or Alternative to Transplantation. Transplantation 108, 1333–1341. https://doi.org/10.1097/TP.0000000000004834 (2024).
-
Kobold, S. et al. Manually Curated Database on Clinical Studies Involving Cell Products Derived from Human Pluripotent Stem Cells. Stem. Cell Rep. 15, 546–555. https://doi.org/10.1016/j.stemcr.2020.06.014 (2020).
-
Ilic, D. & Ogilvie, C. Pluripotent Stem Cells in Clinical Setting-New Developments and Overview of Current Status. Stem. Cells 40, 791–801. https://doi.org/10.1093/stmcls/sxac040 (2022).
-
Jebran, A. F. et al. Engineered heart muscle allografts for heart repair in primates and humans. Nature 639, 503–511. https://doi.org/10.1038/s41586-024-08463-0 (2025).
-
Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015–1024. https://doi.org/10.1038/nbt1327 (2007).
-
Burridge, P. W. et al. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS ONE 6, e18293. https://doi.org/10.1371/journal.pone.0018293 (2011).
-
P. Hofbauer, S.M. Jahnel, S. Mendjan, In vitro models of the human heart, Development 148 (2021). https://doi.org/10.1242/dev.199672.
-
Zuppinger, C. 3D Cardiac Cell Culture: A Critical Review of Current Technologies and Applications. Front. Cardiovasc. Med. 6, 87. https://doi.org/10.3389/fcvm.2019.00087 (2019).
-
Hofbauer, P. et al. Cardioids reveal self-organizing principles of human cardiogenesis. Cell 184, 3299–3317. https://doi.org/10.1016/j.cell.2021.04.034 (2021).
-
Terheyden-Keighley, D. et al. GMP-compliant iPS cell lines show widespread plasticity in a new set of differentiation workflows for cell replacement and cancer immunotherapy. Stem. Cells Transl. Med. 13, 898–911. https://doi.org/10.1093/stcltm/szae047 (2024).
-
Halloin, C. et al. Continuous WNT Control Enables Advanced hPSC Cardiac Processing and Prognostic Surface Marker Identification in Chemically Defined Suspension Culture. Stem. Cell Rep. 13, 775. https://doi.org/10.1016/j.stemcr.2019.09.001 (2019).
-
Kriedemann, N. et al. Standardized production of hPSC-derived cardiomyocyte aggregates in stirred spinner flasks. Nat. Protoc. 19, 1911–1939. https://doi.org/10.1038/s41596-024-00976-2 (2024).
-
M. Uhrig, F. Ezquer, M. Ezquer, Improving Cell Recovery: Freezing and Thawing Optimization of Induced Pluripotent Stem Cells, Cells 11 (2022). https://doi.org/10.3390/cells11050799.
-
Han, H., Zhan, T., Guo, N., Cui, M. & Xu, Y. Cryopreservation of organoids: Strategies, innovation, and future prospects. Biotechnol. J. https://doi.org/10.1002/biot.202300543 (2024).
-
Preininger, M. K., Singh, M. & Xu, C. Cryopreservation of Human Pluripotent Stem Cell-Derived Cardiomyocytes: Strategies, Challenges, and Future Directions. Adv. Exp. Med. Biol. 951, 123–135. https://doi.org/10.1007/978-3-319-45457-3_10 (2016).
-
Xu, C. et al. Efficient generation and cryopreservation of cardiomyocytes derived from human embryonic stem cells. Regen. Med. 6, 53–66. https://doi.org/10.2217/rme.10.91 (2011).
-
van den Brink, L. et al. Cryopreservation of human pluripotent stem cell-derived cardiomyocytes is not detrimental to their molecular and functional properties. Stem. Cell Res. https://doi.org/10.1016/j.scr.2019.101698 (2020).
-
Miller, D. C., Genehr, C., Telugu, N. S., Kurths, S. & Diecke, S. Simple Workflow and Comparison of Media for hPSC-Cardiomyocyte Cryopreservation and Recovery. Curr Protoc Stem Cell Biol 55, e125. https://doi.org/10.1002/cpsc.125 (2020).
-
R.G.C. Maas, S. Lee, M. Harakalova, C.J.B. Snijders Blok, W.R. Goodyer, J. Hjortnaes, P. Doevendans, L.W. Van Laake, J. van der Velden, F.W. Asselbergs, J.C. Wu, J.P.G. Sluijter, S.M. Wu, J.W. Buikema, Massive expansion and cryopreservation of functional human induced pluripotent stem cell-derived cardiomyocytes, STAR Protoc 2 (2021) 100334. https://doi.org/10.1016/j.xpro.2021.100334.
-
Zhang, J. Z. et al. Effects of Cryopreservation on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Assessing Drug Safety Response Profiles. Stem. Cell Rep. 16, 168–181. https://doi.org/10.1016/j.stemcr.2020.11.010 (2021).
-
Prondzynski, M. et al. Efficient and reproducible generation of human iPSC-derived cardiomyocytes and cardiac organoids in stirred suspension systems. Nat. Commun. 15, 5929. https://doi.org/10.1038/s41467-024-50224-0 (2024).
-
Murray, K. A. & Gibson, M. I. Chemical approaches to cryopreservation. Nat. Rev. Chem. 6, 579–593. https://doi.org/10.1038/s41570-022-00407-4 (2022).
-
Whaley, D. et al. Cryopreservation: An Overview of Principles and Cell-Specific Considerations. Cell Transpl. 30, 963689721999617. https://doi.org/10.1177/0963689721999617 (2021).
-
Yamatoya, K. et al. Cryopreservation of undifferentiated and differentiated human neuronal cells. Regen. Ther. 19, 58–68. https://doi.org/10.1016/j.reth.2021.12.007 (2022).
-
Mandumpal, J. B., Kreck, C. A. & Mancera, R. L. A molecular mechanism of solvent cryoprotection in aqueous DMSO solutions. Phys. Chem. Chem. Phys. 13, 3839–3842. https://doi.org/10.1039/c0cp02326d (2011).
-
Verheijen, M. et al. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci. Rep. 9, 4641. https://doi.org/10.1038/s41598-019-40660-0 (2019).
-
R.G.C. Maas, T. Beekink, N. Chirico, C.J.B. Snijders Blok, I. Dokter, V. Sampaio-Pinto, A. van Mil, P.A. Doevendans, J.W. Buikema, J.P.G. Sluijter, F. Stillitano, Generation, High-Throughput Screening, and Biobanking of Human-Induced Pluripotent Stem Cell-Derived Cardiac Spheroids, J. Vis. Exp. https://doi.org/10.3791/64365. (2023).
-
Janssen, J. et al. Hypothermic and cryogenic preservation of cardiac tissue-engineered constructs. Biomater. Sci. 12, 3866–3881. https://doi.org/10.1039/d3bm01908j (2024).
-
Meneghel, J., Kilbride, P. & Morris, G. J. Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies-A Review. Front. Med. (Lausanne) https://doi.org/10.3389/fmed.2020.592242 (2020).
-
Xie, J. et al. Principles and Protocols For Post-Cryopreservation Quality Evaluation of Stem Cells in Novel Biomedicine. Front. Pharmacol. https://doi.org/10.3389/fphar.2022.907943 (2022).
-
Murray, K. A. & Gibson, M. I. Post-Thaw Culture and Measurement of Total Cell Recovery Is Crucial in the Evaluation of New Macromolecular Cryoprotectants. Biomacromol 21, 2864–2873. https://doi.org/10.1021/acs.biomac.0c00591 (2020).
-
Burridge, P. W. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 11, 855–860. https://doi.org/10.1038/nmeth.2999 (2014).
-
P.W. Burridge, A. Holmstrom, J.C. Wu, Chemically Defined Culture and Cardiomyocyte Differentiation of Human Pluripotent Stem Cells, Curr. Protoc. Hum. Genet. 87 (2015) 21 23 21–21 23 15. https://doi.org/10.1002/0471142905.hg2103s87.
-
Kempf, H., Kropp, C., Olmer, R., Martin, U. & Zweigerdt, R. Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat. Protoc. 10, 1345–1361. https://doi.org/10.1038/nprot.2015.089 (2015).
-
Kriedemann, N. et al. Protein-free media for cardiac differentiation of hPSCs in 2000 mL suspension culture. Stem. Cell Res. Ther. 15, 213. https://doi.org/10.1186/s13287-024-03826-w (2024).
-
Xu, X. et al. The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells. Biotechnol. Prog. 26, 827–837. https://doi.org/10.1002/btpr.368 (2010).
-
Kim, Y. Y. et al. Cryopreservation of human embryonic stem cells derived-cardiomyocytes induced by BMP2 in serum-free condition. Reprod. Sci. 18, 252–260. https://doi.org/10.1177/1933719110385130 (2011).
-
Chen, Y. et al. A versatile polypharmacology platform promotes cytoprotection and viability of human pluripotent and differentiated cells. Nat. Methods 18, 528–541. https://doi.org/10.1038/s41592-021-01126-2 (2021).
-
I. Gruh, A. Martens, S. Cebotari, A. Schrod, A. Haase, C. Halloin, W. Triebert, T. Goecke, M. Arar, K. Hoeffler, P. Frank, K. Lampe, A. Moussavi, V. Fricke, N. Kriedemann, M. Szepes, K. Mätz-Rensing, J. Eiringhaus, A.-L.d. Vries, I. Barnekow, C.S. Ferrel, S. Hohmann, M. Witte, T. Kohrn, J. Teske, V. Lupanov, A. Franke, M. Kühnel, D. Jonigk, S. Boretius, C. Veltmann, D. Duncker, A. Hilfiker, A. Haverich, R. Zweigerdt, U. Martin, 2024 Cell therapy with human iPSC-derived cardiomyocyte aggregates leads to efficient engraftment and functional recovery after myocardial infarction in non-human primates, Biorxiv. https://doi.org/10.1101/2023.12.31.573775. (2024).
-
Kobayashi, H. et al. Regeneration of Nonhuman Primate Hearts With Human Induced Pluripotent Stem Cell-Derived Cardiac Spheroids. Circulation 150, 611–621. https://doi.org/10.1161/CIRCULATIONAHA.123.064876 (2024).
-
Liedtke, S., Korschgen, L., Korn, J., Duppers, A. & Kogler, G. GMP-grade CD34(+) selection from HLA-homozygous licensed cord blood units and short-term expansion under European ATMP regulations. Vox Sang. 116, 123–135. https://doi.org/10.1111/vox.12978 (2021).
-
Okita, K. et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem. Cells 31, 458–466. https://doi.org/10.1002/stem.1293 (2013).
-
Nicoletti, I., Migliorati, G., Pagliacci, M. C., Grignani, F. & Riccardi, C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139, 271–279. https://doi.org/10.1016/0022-1759(91)90198-o (1991).
-
Riccardi, C. & Nicoletti, I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc. 1, 1458–1461. https://doi.org/10.1038/nprot.2006.238 (2006).
-
Sala, L. et al. MUSCLEMOTION: A Versatile Open Software Tool to Quantify Cardiomyocyte and Cardiac Muscle Contraction In Vitro and In Vivo. Circ. Res. 122, e5–e16. https://doi.org/10.1161/CIRCRESAHA.117.312067 (2018).
-
van Meer, B. J. et al. Quantification of Muscle Contraction In Vitro and In Vivo Using MUSCLEMOTION Software: From Stem Cell-Derived Cardiomyocytes to Zebrafish and Human Hearts. Curr. Protoc. Hum. Genet. https://doi.org/10.1002/cphg.67 (2018).
Supplementary Video 1.Supplementary Video 2.Supplementary Video 3.Supplementary Video 4.Supplementary Video 5.
